安装Pillow

pip install Pillow

打开图像

from PIL import Image
img = Image.open("./lena.tiff")

保存图像

打开图像之后,可以将其保存,也就是另存为。
img对象.save(保存路径)

save方法不仅能够保存图像,还能够转换格式,取决于保存路径的最终文件后缀名。

img.save("./lena.jpg")
img.save("./lena.png")

查看属性

img = Image.open("./lena.tiff")
print('图像格式:{}'.format(img.format))
print('图像尺寸:{}'.format(img.size))
print('色彩模式:{}'.format(img.mode))

打印结果:

图像格式:TIFF
图像尺寸:(512, 512)
色彩模式:RGB

显示图像

from PIL import Image
import matplotlib.pyplot as plt
img = Image.open("./lena.tiff")
plt.imshow(img)
plt.show()

运行结果:

这是在数字图像处理中 被广泛用来做示例的一张图像  Lena

imshow函数是对图像进行载入,传入的参数可以是img对象,也可以是Numpy数组,最后由show函数负责将载入的图片进行显示。

默认是会带上像素坐标轴的,如果不显示坐标轴,可以在plt.show()之前加一句plt.axis("off"),以下会演示效果。

我们还可以同时显示多张图像,

from PIL import Image
import matplotlib.pyplot as plt #打开三张图片
img1 = Image.open('./lena.tiff')
img2 = Image.open('./lena.png')
img3 = Image.open('./lena.jpg') #设置画布尺寸
plt.figure(figsize=(10,5)) plt.subplot(131) #划分子图 本张为1行3列的第一张图
plt.title(img1.format) #图片标题
plt.axis('off') #关闭坐标轴
plt.imshow(img1) #载入图片 plt.subplot(132)
plt.title(img2.format)
plt.axis('off')
plt.imshow(img2) plt.subplot(133)
plt.title(img3.format)
plt.axis('off')
plt.imshow(img3) plt.show() #显示图片

运行结果:

色彩模式

我们可以使用img对象的convert方法将图像转换色彩模式

img对象.convert(色彩模式)

色彩模式的取值有如下几种:

1:二值图像
L:灰度图像
P:8位彩色图像
RGB:24位彩色图像
RGBA:32位彩色图像
CMYK:CMYK彩色图像
YCbCr:YCbCr彩色图像
I:32位整型灰度图像
F:32位浮点灰度图像

用法示例:

from PIL import Image
import matplotlib.pyplot as plt img1 = Image.open('./lena.tiff')
img_gray = img1.convert("L")
plt.figure(figsize=(10,10))
plt.imshow(img_gray,cmap='gray')
plt.show()

转成灰度图之后  就是这样子:

颜色通道

用img对象的split()方法将图像按照RGB三个通道分离成三个图像。

也可以用Image库的merge函数将多个通道合并成一个图像。

from PIL import Image
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] img = Image.open('./lena.tiff')
img_r,img_g,img_b = img.split()
plt.figure(figsize=(10,10)) plt.subplot(221)
plt.title('R通道',fontsize=18)
plt.axis('off')
plt.imshow(img_r,cmap='gray') plt.subplot(222)
plt.title('G通道',fontsize=18)
plt.axis('off')
plt.imshow(img_g,cmap='gray') plt.subplot(223)
plt.title('B通道',fontsize=18)
plt.axis('off')
plt.imshow(img_b,cmap='gray') img_rgb = Image.merge('RGB',[img_r,img_g,img_b])
plt.subplot(224)
plt.title('合并通道',fontsize=18)
plt.axis('off')
plt.imshow(img_rgb) plt.show()

运行结果:

按灰度图显示对应通道,比如第一张图中,颜色越亮,表示红色越多,颜色越暗,表示红色越少。

图像转数组

在人工智能处理图像的时候,都是先将图像转成数组,数组中的元素对应图像中的各个像素点。

将图像转为数组需要用到numpy的array函数。

from PIL import Image
import numpy as ny
img = Image.open('./lena.tiff')
arr = ny.array(img)
print('形状:{}'.format(arr.shape))
print(arr)

打印结果(数组很长,默认中间以省略号代替):

形状:(512, 512, 3)
[[[226 137 125]
[226 137 125]
[223 137 133]
...
[230 148 122]
[221 130 110]
[200 99 90]]

[[226 137 125]
[226 137 125]
[223 137 133]
...
[230 148 122]
[221 130 110]
[200 99 90]]]

图像数组是一个三维数组,前两维对应图像的尺寸,第三维对应图像的三个通道,也就是说前两维是一个512行乘以512列的矩阵,因为整张图像大小就是512像素*512像素,第三维是每个像素点的RGB三个通道的颜色值。

接下来我们看一下将一张灰度图转为数组是什么样子的,使用上文转换色彩模式时保存下来的灰度图:

from PIL import Image
import numpy as ny
img = Image.open('./003.jpg')
arr = ny.array(img)
print('形状:{}'.format(arr.shape))
print(arr)

打印结果:

形状:(512, 512)
[[162 161 160 ... 171 154 129]
[162 162 161 ... 173 158 133]
[163 162 161 ... 171 155 128]
...
[ 42 45 49 ... 102 103 103]
[ 41 45 50 ... 105 107 109]
[ 41 45 51 ... 102 105 107]]

此时的形状是一个512*512的二维数组,其中每个元素对应一个像素点的灰度值。

那我们可以将这张灰度图做一个反色处理,将每个像素的颜色值都用255来减一下,也就是黑色变成白色,白色变成黑色。

import matplotlib.pyplot as plt
from PIL import Image
import numpy as ny
img = Image.open('./003.jpg')
arr = ny.array(img) plt.figure(figsize=(10,5)) plt.subplot(121)
plt.title('old')
plt.imshow(arr,cmap='gray')
plt.axis('off') new_arr = 255 - arr
plt.subplot(122)
plt.title('new')
plt.imshow(new_arr,cmap='gray')
plt.axis('off') plt.show()

运行结果:

图像缩放

使用img对象的resize方法可以对图像进行缩放

import matplotlib.pyplot as plt
from PIL import Image img = Image.open('./lena.tiff') plt.figure(figsize=(10,5)) plt.subplot(121)
plt.title('old')
plt.imshow(img) new_img = img.resize((64,64))
plt.subplot(122)
plt.title('new')
plt.imshow(new_img) plt.show()

运行结果:

通过坐标轴可以看到 原图是512*512尺寸大小,进行缩放成64*64之后,图像的质量下降,出现了类似马赛克的效果,这个操作是一个降采样的过程。

缩放还可以使用img的thumbnail方法,但不同的是thumbnail方法是对图像的原地操作,不会有返回值,使用示例:

import matplotlib.pyplot as plt
from PIL import Image img = Image.open('./lena.tiff') plt.figure(figsize=(10,5)) plt.subplot(121)
plt.title('old')
plt.imshow(img) img.thumbnail((64,64))
plt.subplot(122)
plt.title('new')
plt.imshow(img) plt.show()

运行结果和之前一模一样。

图像旋转

img对象.transpose()方法对图像进行旋转。

参数中指定旋转方式,有如下几种:

Image.FLIP_LEFT_RIGHT = 0 水平翻转
Image.FLIP_TOP_BOTTOM = 1 上下翻转
Image.ROTATE_90 = 2 逆时针旋转90度
Image.ROTATE_180 = 3 逆时针旋转180度
Image.ROTATE_270 = 4 逆时针旋转270度
Image.TRANSPOSE = 5 将图像转置
Image.TRANSVERSE = 6 将图像进行转置,再水平翻转

可以传常量属性,也可以直接传数字,源码中常量是直接映射成数字处理的。

import matplotlib.pyplot as plt
from PIL import Image img = Image.open('./lena.tiff') plt.rcParams['font.sans-serif']=['SimHei'] plt.figure(figsize=(10,20)) plt.subplot(421)
plt.axis('off')
plt.title('原图',fontsize=18)
plt.imshow(img) img2 = img.transpose(Image.FLIP_LEFT_RIGHT)
plt.subplot(422)
plt.axis('off')
plt.title('水平翻转',fontsize=18)
plt.imshow(img2) img3 = img.transpose(Image.FLIP_TOP_BOTTOM)
plt.subplot(423)
plt.axis('off')
plt.title('上下翻转',fontsize=18)
plt.imshow(img3) img4 = img.transpose(Image.ROTATE_90)
plt.subplot(424)
plt.axis('off')
plt.title('逆时针旋转90度',fontsize=18)
plt.imshow(img4) img5 = img.transpose(Image.ROTATE_180)
plt.subplot(425)
plt.axis('off')
plt.title('逆时针旋转180度',fontsize=18)
plt.imshow(img5) img6 = img.transpose(Image.ROTATE_270)
plt.subplot(426)
plt.axis('off')
plt.title('逆时针旋转270度',fontsize=18)
plt.imshow(img6) img7 = img.transpose(Image.TRANSPOSE)
plt.subplot(427)
plt.axis('off')
plt.title('将图像转置',fontsize=18)
plt.imshow(img7) img8 = img.transpose(Image.TRANSVERSE)
plt.subplot(428)
plt.axis('off')
plt.title('转置+翻转',fontsize=18)
plt.imshow(img8) plt.show()

运行结果:

图像裁剪

img对象.crop((x0,y0,x1,y1))

参数中的x0,y0代表裁剪内容的左上角坐标,x1,y1代表裁剪内容的右下角坐标,两个坐标即可确定出裁剪的矩形区域。

import matplotlib.pyplot as plt
from PIL import Image img = Image.open('./lena.tiff') plt.rcParams['font.sans-serif']=['SimHei'] plt.figure(figsize=(10,5)) plt.subplot(121)
plt.axis('off')
plt.title('原图',fontsize=18)
plt.imshow(img) area = (200,200,400,400)
img2 = img.crop(area)
plt.subplot(122)
plt.axis('off')
plt.title('裁剪结果',fontsize=18)
plt.imshow(img2) plt.show()

运行结果:

Python操作图像的更多相关文章

  1. Python 使用pillow 操作图像

    文档:https://pillow.readthedocs.io/en/stable/index.html 计算机图像基础 颜色和RGBA值 计算机程序通常将图像中的颜色表示为 RGBA 值.RGBA ...

  2. Python 编程快速上手 第十七章 操作图像

    前言 在这一章节,讲了关于图像的三个方面的内容: 获得图像的相关信息:例如 RGBA 值,尺寸... 对图像进行编辑操作:例如 旋转,缩放... 在图像上绘制形状:例如 矩形,圆形... [Image ...

  3. 使用python操作Memcache、Redis、RabbitMQ、

    Memcache 简述: Memcache是一套分布式的高速缓存系统,由LiveJournal的Brad Fitzpatrick开发,但目前被许多网站使用以提升网站的访问速度,尤其对于一些大型的.需要 ...

  4. python操作Redis缓存

    python操作Redis缓存 https://www.cnblogs.com/guotianbao/p/8683037.html 学习资料:电子书资源 联系邮箱:gmu1592618@gmail.c ...

  5. Python(九) Python 操作 MySQL 之 pysql 与 SQLAchemy

    本文针对 Python 操作 MySQL 主要使用的两种方式讲解: 原生模块 pymsql ORM框架 SQLAchemy 本章内容: pymsql 执行 sql 增\删\改\查 语句 pymsql ...

  6. Python 【第六章】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

    Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...

  7. 练习:python 操作Mysql 实现登录验证 用户权限管理

    python 操作Mysql 实现登录验证 用户权限管理

  8. Python操作MySQL

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...

  9. Python操作Mysql之基本操作

    pymysql python操作mysql依赖pymysql这个模块 下载安装 pip3 install pymysql 操作mysql python操作mysql的时候,是通过”游标”来进行操作的. ...

随机推荐

  1. C:将算术表达式的符号和数分开

    程序: #include <stdio.h> #include <string.h> static int pos=; static char* line; void test ...

  2. ZT:如果有来生,要做一棵树

    出处:https://zhidao.baidu.com/question/393644025.html 原以为是三毛所作,想不到还有争议. 如果有来生,要做一棵树, 站成永恒.没有悲欢的姿势, 一半在 ...

  3. java多版本管理

    背景 java版本的升级也比较频繁, 每年一个版本或更多 虽然java环境变量的配置无技术性可言, 但对于频繁切换也是比较枯燥的 java版本管理工具 sdkman: https://sdkman.i ...

  4. Salesforce LWC学习(二十五) Jest Test

    本篇参看: https://trailhead.salesforce.com/content/learn/modules/test-lightning-web-components https://j ...

  5. 文件操作和OS模块的简单操作

    文件的作用 大家应该听说过一句话:“好记性不如烂笔头”. 不仅人的大脑会遗忘事情,计算机也会如此,比如一个程序在运行过程中用了九牛二虎之力终于计算出了结果,试想一下如果不把这些数据存放起来,相比重启电 ...

  6. tcp建立连接为什么需要三次握手和四次挥手

    前言 众所周知tcp传输层协议在建立连接的时候需要三次才能建立起一个真正的可靠连接,可是为什么是三次呢,不可以是两次,四次等等呢,可以自己思考一番,带着疑问可以看下文. 三次握手 在<计算机网络 ...

  7. 吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记

    第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法, ...

  8. python里面的project、package、module分别是什么

    2020/5/25 1.project(项目) project 即项目,是一个很大的文件夹,里面有好多的 .py 文件. 在Spyder 中点击菜单栏 projects ----->  new ...

  9. Redis 部署方式(单点、master/slaver、sentinel、cluster) 概念与区别

    转载自 https://blog.csdn.net/java_zyq/article/details/83818341 在K8S上部署Redis集群时突然遇到一个(sentinel哨兵模式)概念,感觉 ...

  10. 我还在生产玩 JDK7,JDK 15 却要来了!

    自从 JDK9 之后,每年 3 月与 9 月 JDK 都会发布一个新的版本,而2020 年 9 月即将引来 JDK15. 恰巧 IDEA 每四五个月会升级一个较大的版本,每次升级之后都会支持最新版本 ...