Time Limit: 4 Seconds      Memory Limit: 65536 KB


Alice and Bob like eating cake very much. One day, Alice and Bob went to a bakery and bought many cakes.

Now we know that they have bought n cakes in the bakery. Both of them like delicious cakes, but they evaluate the cakes as different values. So they decided to divide those
cakes by following method.

Alice and Bob do n / 2 steps, at each step, Alice choose 2 cakes, and Bob takes the cake that he evaluates it greater, and Alice take the rest cake.

Now Alice want to know the maximum sum of the value that she can get.

Input

The first line is an integer T which is the number of test cases.

For each test case, the first line is an integer n (1<=n<=800). Note that n is always an even integer.

In following n lines, each line contains two integers a[i] and b[i], where a[i] is the value of ith cake that Alice evaluates,
and b[i] is the value of ith cake that Bob evaluates. (1<=a[i]b[i]<=1000000)

Note that a[1]a[2]..., a[n] are n distinct integers and b[1]b[2]..., b[n] are n distinct integers.

Output

For each test case, you need to output the maximum sum of the value that Alice can get in a line.

Sample Input

1
6
1 6
7 10
6 11
12 18
15 5
2 14

Sample Output

28

题意:有n个球,两个人玩游戏,每次选出两个球,B会选出他认为球的价值比较大的,会挑走一个球,然后A会得到另一个球的价值,问怎样取能使A获得的价值最大。

思路:可以先按B所认为的价值从大到小排序,那么对于任意前m件物品,A可以得到m/2件,然后设dp[i][j]表示前i件物品A取出j件最多获得的价值,那么当循环到前第i件时有两种转移形式,一种是这一件不取,那么前i-1件就要取j件,否则就要取j-1件,即dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+c[i].a);

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 0x7fffffff
#define maxn 810
struct node{
int a,b;
}c[maxn]; bool cmp(node a,node b){
return a.b>b.b;
}
int dp[maxn][maxn]; int main()
{
int n,m,i,j,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d%d",&c[i].a,&c[i].b); }
sort(c+1,c+1+n,cmp);
memset(dp,-1,sizeof(dp));
dp[1][0]=0;
for(i=2;i<=n;i++){
dp[i][0]=0;
for(j=1;j<=i/2;j++){
dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+c[i].a); }
}
printf("%d\n",dp[n][n/2]);
}
}

还有两种是贪心的解法,一个是从前往后贪心,还有一个是从后往前贪心,两者的本质是一样的。我们考虑从后往前贪心,因为不管A所选择的两个数是什么,都是B先选,所以我们可以先把n个数据按b为第一关键字从大到小排序,按a从大到小排序。那么不管我们取出哪两个数,B都是取排在前面的数,题目等价于有n个数,B按顺序取对其来说价值最大的数,A尽可能多的取得对它来说价值大的数。那么我们考虑B取法的规律,前1个数,B至少取1个,前3个数,B至少取2个,前5个数,B至少取3个....前n(n为奇数)个数,B至少取n/2+1个,所以我们可以推出前1个数必由B取,前3个数A至多取1个,前5个数,A至多取3个...那么我们便可进一步推出,后1个数,A至少取1个,后3个数,A至少取2个,后5个数,B至少取3个,那么我们可以从后往前每次把2个数放入set里,然后把set里最大的数取出,加上该值就行了。

代码一:(从后往前推)

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 1000
struct node1{
int num;
}temp,temp1;
bool operator<(node1 c,node1 d){
return c.num>d.num;
}
set<node1>myset;
set<node1>::iterator it; struct node{
int a,b;
}c[maxn];
bool cmp(node c,node d){
return c.b>d.b;
} int main()
{
int n,m,i,j,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d%d",&c[i].a,&c[i].b);
}
sort(c+1,c+1+n,cmp);
if(n==2){
printf("%d\n",c[2].a);
continue;
}
int sum=c[n].a;
myset.clear();
for(i=n-1;i>=1;i--){
node1 temp;
temp.num=c[i].a;
myset.insert(temp);
if(i%2==0){
it=myset.begin();
sum+=(*it).num;
myset.erase(*it);
}
}
printf("%d\n",sum);
}
return 0;
} /*
1
6
1 6
7 10
6 11
12 18
15 5
2 14
*/

代码二:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 1000
set<int>myset;
set<int>::iterator it; struct node{
int a,b;
}c[maxn];
bool cmp(node c,node d){
return c.b>d.b;
} int main()
{
int n,m,i,j,T,sum1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
sum1=0;
for(i=1;i<=n;i++){
scanf("%d%d",&c[i].a,&c[i].b);
sum1+=c[i].a;
}
sort(c+1,c+1+n,cmp);
if(n==2){
printf("%d\n",c[2].a);
continue;
}
int sum=0;
myset.clear();
for(i=1;i<=n;i++){
myset.insert(c[i].a);
if(i%2==1){
it=myset.begin();
sum+=*it;
myset.erase(it);
}
}
printf("%d\n",sum1-sum);
}
return 0;
} /*
1
6
1 6
7 10
6 11
12 18
15 5
2 14
*/

zoj3905 Cake的更多相关文章

  1. Windows 7上执行Cake 报错原因是Powershell 版本问题

    在Windows 7 SP1 电脑上执行Cake的的例子 http://cakebuild.net/docs/tutorials/getting-started ,运行./Build.ps1 报下面的 ...

  2. 2015暑假多校联合---Cake(深搜)

    题目链接:HDU 5355 http://acm.split.hdu.edu.cn/showproblem.php?pid=5355 Problem Description There are m s ...

  3. Scalaz(15)- Monad:依赖注入-Reader besides Cake

    我们可以用Monad Reader来实现依赖注入(dependency injection DI or IOC)功能.Scala界中比较常用的不附加任何Framework的依赖注入方式可以说是Cake ...

  4. uva10167 Birthday Cake

    Lucy and Lily are twins. Today is their birthday. Mother buys a birthday cake for them. Now we put t ...

  5. HDU 4762 Cut the Cake(公式)

    Cut the Cake Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. Brute Force --- UVA 10167: Birthday Cake

     Problem G. Birthday Cake  Problem's Link:http://uva.onlinejudge.org/index.php?option=com_onlinejudg ...

  7. 2015-2016 ACM-ICPC, NEERC, Southern Subregional Contest, B. Layer Cake

    Description Dasha decided to bake a big and tasty layer cake. In order to do that she went shopping ...

  8. hdu acmsteps 2.1.3 Cake

    Cake Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  9. ZOJ 3905 Cake ZOJ Monthly, October 2015 - C

    Cake Time Limit: 4 Seconds      Memory Limit: 65536 KB Alice and Bob like eating cake very much. One ...

随机推荐

  1. web网上书店总结(jsp+servlet)

    web网上书店总结 前端的首页.效果如下: 基本上按照页面有的内容对其实现功能.按照用户划分功能模块,有后台管理员和普通用户,登录的时候会判断账户的类别,例如0权限代表普通用户登录,1权限代表管理员登 ...

  2. 聊聊 g0

    很多时候,当我们跟着源码去理解某种事物时,基本上可以认为是以时间顺序展开,这是编年体的逻辑.还有另一种逻辑,纪传体,它以人物为中心编排史事,使得读者更聚焦于某个人物.以一种新的视角,把所有的事情串连起 ...

  3. innobackupex: Connecting to MySQL server with DSN 'dbi:mysql

    [root@ma src]# innobackupex --user=root /root/backup --no-timestamp InnoDB Backup Utility v1.5.1-xtr ...

  4. 【Linux】ssh设置了密钥,但ssh登陆的时候还需要输入密码

    ------------------------------------------------------------------------------------------------- | ...

  5. JS获取本机地址,生成地图

    dome代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  6. Oracle数据库启动和关闭

    在介绍oracle数据库的启动和关闭前,先看一下Oracle的参数文件. oracle参数文件 1.初始化参数文件 oracle的初始化参数文件分为spfilesid.ora.spfile.ora.i ...

  7. 并发编程之fork/join(分而治之)

    1.什么是分而治之 分而治之就是将一个大任务层层拆分成一个个的小任务,直到不可拆分,拆分依据定义的阈值划分任务规模. fork/join通过fork将大任务拆分成小任务,在将小任务的结果join汇总 ...

  8. 全栈性能测试修炼宝典-JMeter实战笔记(二)

    性能测试初体验 性能测试实质:利用工具去模拟大量用户操作来验证系统能够承受的负载情况,找出潜在的性能问题,分析并解决:找出系统性能变化趋势,为后续的扩展提供参考 测试分类 测试内容中,负载测试.压力测 ...

  9. apk开发环境!多亏这份《秋招+金九银十-腾讯面试题合集》跳槽薪资翻倍!再不刷题就晚了!

    开头 最近很多网友反馈:自己从各处弄来的资料,过于杂乱.零散.碎片化,看得时候觉得挺有用的,但过个半天,啥都记不起来了.其实,这就是缺少系统化学习的后果. 为了提高大家的学习效率,帮大家能快速掌握An ...

  10. Mac 禁用动画

    # opening and closing windows and popovers defaults write -g NSAutomaticWindowAnimationsEnabled -boo ...