Yarn参数优化(Fair Scheduler版本)
YARN
自从hadoop2.0之后, 我们可以使用apache yarn 来对集群资源进行管理。yarn把可以把资源(内存,CPU)以Container的方式进行划分隔离。YARN会管理集群中所有机器的可用计算资源. 基于这些资源YARN会调度应用(比如MapReduce)发来的资源请求, 然后YARN会通过分配Container来给每个应用提供处理能力, Container(容器)是YARN中处理能力的基本单元, 是对内存, CPU等的封装(容器)。
ResourceManager:以下简称RM。YARN的中控模块,负责统一规划资源的使用。
NodeManager:以下简称NM。YARN的资源结点模块,负责启动管理container。
ApplicationMaster:以下简称AM。YARN中每个应用都会启动一个AM,负责向RM申请资源,请求NM启动container,并告诉container做什么事情。
Container:资源容器。YARN中所有的应用都是在container之上运行的。AM也是在container上运行的,不过AM的container是RM申请的。
了解上面的基本概念之后,就可以开始优化集群的配置了
配置NM的注册资源
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>30</value>
<discription>每个nodemanager可分配的cpu总核数</discription>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>122880</value>
<discription>每个nodemanager可分配的内存总量</discription>
</property>
优化建议:
1. cpu核数=逻辑核数-其他应用数(datanode?work?zk?等)
cat /proc/cpuinfo | grep "processor" | wc -l
可以查看集群的逻辑核数
2. 内存建议是CPU的整数倍,给系统预留好足够用的内存
ApplicationMaster配置
<property>
<name>yarn.app.mapreduce.am.resource.cpu-vcores</name>
<value>1</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>4096</value>
<discription>ApplicationMaster的占用的内存大小</discription>
</property>
优化建议
1. cpu和内存比例和 nm的分配比例保持一致
Container 配置优化
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>16384</value>
<discription>单个任务可申请最大内存,默认8192MB</discription>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>4</value>
<discription>单个任务可申请的最多虚拟CPU个数</discription>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value>1</value>
<discription>单个任务可申请的最小虚拟CPU个数</discription>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>4096</value>
<discription>container最小可申请的内存</discription>
</property>
优化建议
1. 在调度器中,很多资源计算部分会转化为这个最小值的N倍进行计算。所以,设定可分配内存等资源的时候,最好是刚好为这个最小值的倍数
2. cpu/内存比例保持一致
3.
YARN采用了线程监控的方法判断任务是否超量使用内存,一旦发现超量,则直接将其杀死。由于Cgroups对内存的控制缺乏灵活性(即任务任何时刻不能超过内存上限,如果超过,则直接将其杀死或者报OOM),而Java进程在创建瞬间内存将翻倍,之后骤降到正常值,这种情况下,采用线程监控的方式更加灵活(当发现进程树内存瞬间翻倍超过设定值时,可认为是正常现象,不会将任务杀死),因此YARN未提供Cgroups内存隔离机制来控制容器。
mapreduce参数设置
<property>
<name>mapreduce.map.memory.mb</name>
<value>4096</value>
<discription>map的内存大小</discription>
</property>
<property>
<name>mapreduce.map.java.opts</name>
<value>-Xmx3072M</value>
<discription>用户设定的map/reduce阶段申请的container的JVM参数。最大堆设定要比申请的内存少一些,用于JVM的非堆部分使用0.80-0.85建议</discription>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>8192</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Xmx6144M</value>
</property>
优化参考
1. 如果集群主要使用mr进行计算,那么建议map的内存和cpu和容器最小的相等。
2. 一个容器里面最多跑几个map?yarn.scheduler.maximum-allocation-mb/mapreduce.map.memory.mb=4
问题来了
如何控制一个nodemanager里Container的数量呢?
<property>
<name>yarn.scheduler.fair.assignmultiple</name>
<value>true</value>
<discription>是否允许NodeManager一次分配多个容器</discription>
</property>
<property>
<name>yarn.scheduler.fair.max.assign</name>
<value>20</value>
<discription>如果允许一次分配多个,一次最多可分配多少个,这里按照一个最小分配yarn.scheduler.minimum-allocation-mb4gb来计算总共内存120/4=30给20即可</discription>
</property>
Fari Scheduler 配置案例
24个节点每个节点120GB内存30个逻辑CPU
<?xml version="1.0"?>
<allocations>
<queue name="mapreduce">
<minResources>368640 mb,90 vcores</minResources><!--3 nodes-->
<maxResources>2334720 mb,570 vcores</maxResources><!--19 nodes-->
<maxRunningApps>70</maxRunningApps>
<weight>5</weight>
<queue name="vipquery">
<minResources>122880 mb,30 vcores</minResources><!--1 nodes-->
<maxResources>1966080 mb,480 vcores</maxResources><!--16 nodes-->
<maxRunningApps>20</maxRunningApps>
<weight>8</weight>
</queue>
<queue name="hive">
<minResources>122880 mb,30 vcores</minResources><!--1 nodes-->
<maxResources>1966080 mb,480 vcores</maxResources><!--16 nodes-->
<maxRunningApps>20</maxRunningApps>
<weight>7</weight>
</queue>
<queue name="hadoop">
<minResources>122880 mb,30 vcores</minResources><!--1 nodes-->
<maxResources>1966080 mb,480 vcores</maxResources><!--16 nodes-->
<maxRunningApps>30</maxRunningApps>
<weight>6</weight>
</queue>
</queue>
<queue name="default">
<minResources>122880 mb,30 vcores</minResources><!--1 nodes-->
<maxResources>614400 mb,150 vcores</maxResources><!--5 nodes-->
<maxRunningApps>20</maxRunningApps>
<weight>1</weight>
</queue>
</allocations>
总结
通过合理的配置Yarn可以有效的控制,资源抢占,还有峰值并发等问题。
Yarn参数优化(Fair Scheduler版本)的更多相关文章
- YARN的Fair Scheduler和Capacity Scheduler
关于Scheduler YARN有四种调度机制:Fair Schedule,Capacity Schedule,FIFO以及Priority: 其中Fair Scheduler是资源池机制,进入到里面 ...
- 三:Fair Scheduler 公平调度器
参考资料: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html http://h ...
- Hadoop YARN 调度器(scheduler) —— 资源调度策略
本文通过MetaWeblog自动发布,原文及更新链接:https://extendswind.top/posts/technical/hadoop_yarn_resource_scheduler 搜了 ...
- 【Hadoop离线基础总结】MapReduce参数优化
MapReduce参数优化 资源相关参数 这些参数都需要在mapred-site.xml中配置 mapreduce.map.memory.mb 一个 MapTask 可使用的资源上限(单位:MB),默 ...
- hadoop之yarn(优化篇)
最近一直在学习hadoop的一些原理和优化,然后也做了一些实践,也有没有去做实践的,反正个人观点都记录下来 一.yarn的介绍 YARN的基本结构由一个ResourceManager与多个NodeMa ...
- Fair Scheduler 队列设置经验总结
Fair Scheduler 队列设置经验总结 由于公司的hadoop集群的计算资源不是很充足,需要开启yarn资源队列的资源抢占.在使用过程中,才明白资源抢占的一些特点.在这里总结一下. 只有一个队 ...
- MySQL配置文件my.cnf参数优化和中文详解
Mysql参数优化对于新手来讲,是比较难懂的东西,其实这个参数优化,是个很复杂的东西,对于不同的网站,及其在线量,访问量,帖子数量,网络情况,以及机器硬件配置都有关系,优化不可能一次性完成,需要不断的 ...
- jvm参数优化
一.HotSpot JVM 提供了三类参数 现在的JVM运行Java程序(和其它的兼容性语言)时在高效性和稳定性方面做的非常出色.例如:自适应内存管理.垃圾收集.及时编译.动态类加载.锁优化等.虽然有 ...
- storm第一篇--概念,例子,参数优化
1 概念 目前最新的0.8.0版本里面 worker -> 进程.一个worker只能执行同一个spout/bolt的task,一个worker里面可以有多个executor. executor ...
随机推荐
- 如何保持json序列化的顺序性?
说到json,相信没有人会陌生,我们天天都在用.那么,我们来讨论个问题,json有序吗?是谁来决定的呢?如何保持? 说到底,json是框架还是啥?实际上它只是一个数据格式,一个规范标准,它永远不会限制 ...
- C++ 入门篇
C++基础入门 1 C++初识 1.1 第一个C++程序 编写一个C++程序总共分为4个步骤 创建项目 创建文件 编写代码 运行程序 1.1.1 创建项目 Visual Studio是我们用来编写 ...
- Linux复制某个目录下结构
Linux复制某个目录下结构 结合tree命令把当前目录下的文件夹路径存储到document.txt文件,然后再使用mkdir命令把document.txt文件下的目录输入创建: tree -fid ...
- 在 WPF 中使用 MahApps.Metro.IconPacks 提供的大量图标
MahApps.Metro.IconPacks https://github.com/MahApps/MahApps.Metro.IconPacks 提供了大量的高质量的图标供WPF使用,极其方便. ...
- 【Linux】大于2T的磁盘怎么分区?
环境CentOS7.1 2.9t磁盘 fdisk 只能分区小于2t的磁盘,大于2t的话,就要用到parted 1,将磁盘上原有的分区删除掉: 进入:#parted /dev/sdb 查看:(par ...
- 奇技淫巧,还是正统功夫? - Python推导式最全用法
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 python免费学习资 ...
- 树莓派3B装ubuntu server后开启wifi
树莓派官网选择ubuntu server下载映像 step 1: 使用SDFormatter格式化SD卡: step2: 使用win32diskimager工具将映像写入准备好的SD卡: step3: ...
- AQS之ReentrantReadWriteLock写锁
用法 1.1 定义一个安全的list集合 public class LockDemo { ArrayList<Integer> arrayList = new ArrayList<& ...
- (数据科学学习手札104)Python+Dash快速web应用开发——回调交互篇(上)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- 【链表】leetcode-1290-二进制链表转整数
leetcode-1290-二进制链表转整数 题目描述 给你一个单链表的引用结点 head.链表中每个结点的值不是 0 就是 1.已知此链表是一个整数数字的二进制表示形式. 请你返回该链表所表示数字的 ...