数论总结——更新ing
数论还是有很多没学完 只是小小的总结
一、同余定理
1.反身性:\(a\equiv a (mod m)\)
2.对称性:若\(a\equiv b(mod m)\),则\(b\equiv a (mod m)\)
3.传递性:若\(a\equiv b(mod m)\),\(b\equiv c(mod m)\),则\(a\equiv c(mod m)\)
4.同余式相加:若\(a\equiv b(mod m)\),\(c\equiv d(mod m)\),则\(ac\equiv bd(mod m)\)
5.同余式相乘:若\(a\equiv b(mod m)\),\(c\equiv d(mod m)\),则\(ac\equiv bd(mod m)\)
二、最小公倍数与最大公约数
最大公约数:GCD
辗转相除法:设\(gcd(a,b)\)为\(a\)与\(b\)的最大公约数
```cpp
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
```
最小公倍数:LCM
记$d=gcd(a,b)$,$a=a'd$,$b=b'd$,可以看出 $lcm(a,b)=\frac{ab}{gcd(a,b)}$
## 三、整除
给定$a$,$b$两个数,若b能整除a,记作$b\mid a$,反之记作$a\nmid b$
简单定理:
* 若$b\mid a$,且$c\mid b$,则$c\mid a$
* 若$c\mid a$,且$c\mid b$,则$c\mid \left(na+mb\right)$
## 四、素数与合数
对于任意一个大于1的自然数,只有1和它本身两个因子,则称为素数
素数定理:小于等于x的素数个数 $\approx \frac{x}{\ln x}$ ,可以用来估计素数个数,估算所开数组的大小
不是素数的大于1的自然数称为合数
素数筛法:
### 1、暴力枚举
复杂度:$O(\log{n})$
由于任意一个数$x$的因子可看为两部分,小于$\sqrt{x}$与大于$\sqrt{x}$,因此可以枚举所有$\{i\mid i\le \sqrt{x}\}$,如若出现$i\mid x$,则不是素数,反之是素数。
*一般用于对某单个数的素性判定*
```cpp
bool check(int x)
{
int end = sqrt(x);
for (int i = 2; i <= end; ++i)
{
if (x % i == 0)
return false;
}
return true;
}
```
拓展内容(求单个合数的最大质因数)
对于任何一个数$x$,可以将他进行质因数分解,且同时保证$prime[i]^2\le x_{cur}$进行优化。
首先可以预处理出所有$\{prime\mid prime \le \sqrt{x}\}$,这样$x$的质因数分解一定是在这个集合中,或者只有最大质因数不在这个集合中。如果所剩下的最后一个数为1,即完美的进行了质因数分解,则最大质因数为最后一次除的质数,反之则最后剩下的数即为最大质因数
```cpp
const int maxn = 10000;
int vis[maxn];
int cnt, prime[maxn/10];
void Euler_Sieve()
{
for (int i = 2; i < maxn; ++i)
{
if (!vis[i]) prime[cnt++] = i;
for (int j = 0; j < cnt && prime[j] * i < maxn; ++j)
{
vis[prime[j] * i] = true;
if (i % prime[j] == 0)
break;
}
}
}
int Maximum_prime_factor(int x)
{
int ans;
for (int i = 0; i < cnt && prime[i] * prime[i] <= x; ++i)
{
if (x % prime[i] == 0)
{
ans = prime[i];
while (x % prime[i] == 0)
x /= prime[i];
}
}
return x == 1 ? ans : x;
}
```
### 2、埃氏筛法
复杂度:$O(\log{\log{n}})$
由于对于任何合数而言,他们能够被任意$prime$ 整除,所以,可以通过枚举$k*prime(k*prime\le lim_{up})$,来筛选出一些约数,而没有被筛选过的自然就是素数
值得说明的是:当选中某个$prime$时,比$prime$小的质数的倍数已经被筛出了,所以为了减小时间复杂度,可以从$prime^2$开始筛选
```cpp
const int maxn = 10000;
bool vis[maxn];
int cnt, prime[maxn / 10];
void Eratosthenes_Sieve()
{
for (int i = 2; i < maxn; ++i)
{
if (vis[i]) continue;
prime[cnt++] = i;
for (int j = i * i; j < maxn; j += i)
vis[j] = true;
}
}
```
拓展内容(求出多个合数的最大质因数)
利用埃氏筛法是由小质数到大质数的筛选过程,每次大质数筛选时会覆盖之前小质数的结果,因此可以得到实现代码
注意:开始条件从$i^2$变为了$2i$
```cpp
#include<cstdio>
const int maxn = 10000;
int vis[maxn];
int cnt, prime[maxn / 10];
void get_Maximum_prime_factors()
{
for (int i = 2; i < maxn; ++i)
{
if (vis[i]) continue;
prime[cnt++] = i;
for (int j = 2*i; j < maxn; j += i)
vis[j] = i;
}
}
```
### 3、欧拉筛
复杂度:$O(n)$
通过对每个合数,只用其最小的质因数进行筛选的思想,每次将$cur*prime[i]$对应的数筛出,为了保证最小的质因数筛出,当$prime[i]\mid cur$时,需要break
原因在于设$cur=k*prime[i]$,那么如果继续筛即对于
$$n=cur*prime[i+1]=(prime[i]*k)*prime[i+1]=prime[i]*(k*prime[i+1])$$则可以看出来,这个数$n$本应该在枚举$cur$到比它大的数$k*prime[i+1]$被比$prime[i+1]$更小的$prime[i]$筛出
```cpp
void Euler_Sieve()
{
for (int i = 2; i < maxn; ++i)
{
if (!vis[i]) prime[cnt++] = i;
for (int j = 0; j < cnt && prime[j] * i < maxn; ++j)
{
vis[prime[j] * i] = true;
if (i % prime[j] == 0)
break;
}
}
}
```
拓展内容(求出多个合数的最小质因数)
利用欧拉筛每个数都被其最小质因数所筛去
注意:开始条件从$i^2$变为了$2i$
```cpp
#include<cstdio>
const int maxn = 10000;
int vis[maxn];
int cnt, prime[maxn / 10];
void get_Maximum_prime_factors()
{
for (int i = 2; i < maxn; ++i)
{
if (!vis[i]) vis[i] = prime[cnt++] = i;
for (int j = 0; j < cnt && prime[j] * i < maxn; ++j)
{
vis[prime[j] * i] = prime[j];
if (i % prime[j] == 0)
break;
}
}
}
```
### 4、杜教筛
待学
### 5、min25筛
待学
## 五、欧拉函数\]
数论总结——更新ing的更多相关文章
- 适合入门自学服装裁剪滴书(更新ing)
[♣]适合入门自学服装裁剪滴书(更新ing) [♣]适合入门自学服装裁剪滴书(更新ing) 适合入门自学服装裁剪滴书(更新ing) 来自: 裁缝阿普(不为良匠,便为良医.) 2014-04-06 23 ...
- Coursera,Udacity,Edx 课程列表(更新ing)
Coursera,Udacity,Edx 课程列表(更新ing) Coursera有很多特别好的课程,平时没有机会听到国外大牛的课程,通过Coursera算是可以弥补一下吧,国外的课程普遍比国内的老师 ...
- storcli 命令(更新Ing)
help [root@centos7]# storcli -h Storage Command Line Tool Ver 007.0606.0000.0000 Mar , (c)Copyright ...
- 【板子】数论基础(持续更新ing...)
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...
- 大白话strom——问题收集(持续更新ing)
本文导读: 1.基于storm的应用 2.storm的单点故障解决 3.strom与算法的结合学习4.杂记——常见问题的解答5.http://www.blogchong.com/catalog.asp ...
- paper 34 :常见函数的举例(更新ing)2
在研究opencv,不是很难,但是需要换种思维来认知这个C/C++为编程函数的开源代码库,OK,我现在还是总结一些常用MATLAB的函数,随时更新,下一阶段就是opencv方面的认知了! 1.std ...
- 一些不认识的开源js(更新ing。。。)
孟星魂和小蝶归隐山林曾经说过,我们不问江湖事,但是不能不知道江湖事,因为我们是老伯的人(大概意思),所以有些东西可以用不到,但是一定要了解点... (首先不能人云亦云,但是有个主观观点也没啥大问题) ...
- Python:常见错误集锦(持续更新ing)
初学Python,很容易与各种错误不断的遭遇.通过集锦,可以快速的找到错误的原因和解决方法. 1.IndentationError:expected an indented block 说明此处需要缩 ...
- 【小知识+小细节】不断更新ing...
1.printf printf("%.0lf",k) 输出的不是floor(k) 而是k四舍五入 ..才发现.xlf 都是四舍五入取x位 2.cin char buff[300] ...
随机推荐
- ubuntu20 使用命令安装 mysql
命令安装 mysql sudo apt-get update sudo apt-get install -y mysql-server mysql-client 查看 mysql 安装情况 servi ...
- 实验 6:OpenDaylight 实验——OpenDaylight 及 Postman 实现流表下发
一.实验目的 熟悉 Postman 的使用:熟悉如何使用 OpenDaylight 通过 Postman 下发流表. 二.实验任务 流表有软超时和硬超时的概念,分别对应流表中的 idle_timeou ...
- 多测师讲解python _类(原始版)_高级讲师肖sir
# Python中的类: '''定义一个类:class +名称=类 在类当中定义:def +名称=实例方法(self)与类平齐def +名称=普通函数定义一个函数:def +名称=函数在函数中:函数( ...
- 学不动了!微信官方推出 Web 前端和小程序统一框架 Kbone
听说最近微信官方推出了一个统一 Web 前端和小程序的框架 -- Kbone ,特意去看了下... 为什么微信要搞Kbone? 微信小程序的底层模型和 Web 端不同,开发者无法直接把 Web 端的代 ...
- Anno 框架 增加缓存、限流策略、事件总线、支持 thrift grpc 作为底层传输
github 地址:https://github.com/duyanming/dymDemo dym 分布式开发框架 Demo 熔断 限流 事件总线(包括基于内存的.rabbitmq的) CQRS D ...
- spring-boot-route(十九)spring-boot-admin监控服务
SpringBootAdmin不是Spring官方提供的模块,它包含了Client和Server两部分.server部分提供了用户管理界面,client即为被监控的服务.client需要注册到serv ...
- js 如何获取浏览器的高度?
<SCRIPT LANGUAGE="JavaScript"><!--var s = ""; s += " 网页可见区域宽:" ...
- C++学习笔记---数据类型
1.整型 C++中能够表示整型的类型有几下几种方式,区别在于所占内存空间不足 数据类型 占用空间 取值范围 short(短整型) 2字节 (-2^15~2^15-1) int(整型) 4字节 (-2^ ...
- git学习(三) git的分支操作
git的分支操作 软件项目中启动一套单独的开发线的方法,可以很好的避免版本兼容开发的问题,避免不同版本之间的相互影响,封装一个开发阶段,解决bug的时候新建分支,用于对该bug的研究: git中跟分支 ...
- 一、ETL实践之数据可视化架构
开篇心声: 不管是学习新知识,还是遇到各种难题,总能在技术论坛找到经验帖子.一直享受大家提供的帮助,而自己没有任何输出,实在过意不去.我相信技术是经验的交流,思维的碰撞. 这是我一次写技术分享文章,我 ...