CF76A Gift
题目描述
有一个国家有N个城市和M条道路,这些道路可能连接相同的城市,也有可能两个城市之间有多条道路。
有一天,有一伙强盗占领了这个国家的所有的道路。他们要求国王献给他们礼物,进而根据礼物的多少而放弃占领某些边。对于每一条道路,强盗都给出了相应的要求,金子gi的数量,银子si的数量。也就是说若国王给强盗G个金子,S个银子,那么他们就会放弃占领满足gi<=G and si<=S 的道路。
现在国王知道金子、银子的单价,他想花费钱财购买金银送给强盗,使强盗放弃一些道路,进而使N个城市能互相到达。但是国王又想花费最少。请你计算最少的花费。
输入格式
第一行有两个整数N和M,表示有N个城市M条道路。
第二行有两个整数G和S,表示购买金子和银子的价格。
以后M行,每行4整数X,Y,g,s,表示这条道路连接X城市和Y城市,要求g个金子,s个银子。
100% N<=200,M<=50000
输出格式
一个整数,表示最少花费。要是没有满足的情况,输出-1。
二维限制的最小生成树。
第一眼思路是二分套二分,然后做最小生成树。但是答案显然没有单调性,所以不能这样做。所以我们只能试试暴力。首先要确定的是,购买的金子数量肯定等于某条边的边权,如果小了那可能整个图不连通,大了又浪费了;银子同理。所以我们可以先将所有边按金子数量从小到大排序,然后枚举每条边的边权作为这一次购买的金子数量。那么此时金子数小于等于当前金子数的边都是可以选的,如果我们用这些边构建出了一棵生成树那么就是合法的,否则不合法。
在枚举了每种金子数时,我们为了使代价尽量小,我们需要尽量选银子少的路。所以此时我们将可选的边再按照银子数从小到大进行排序,用Kruskal求出最小生成树。如果成功的话,就用这种方案的代价与答案进行比较取更优。
忽略排序的时间复杂度为O(M^2),显然太慢。
接下来我们想一下优化。通过分析可以得出,设当前可选的边的集合为A,选中的边的集合为B,也就是说B是当前最优的边。如果后面枚举金子数时加进来新的边,那新的生成树的边肯定也是在新边和B集合中找。也就是说,B在A中的补集已经没有用了,我们将它删掉。那么我们每次需要处理的边最多就只有n-1条,时间复杂度为O(MN)。
那么上代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define maxn 201
#define maxm 50001
using namespace std;
struct edge{
int u,v;
long long g,s;
bool operator<(const edge &e)const{ return g==e.g?s<e.s:g<e.g; }
}e[maxm];
int fa[maxn],cnt;
int stack[maxn],top;
int n,m;
long long g,s,ans=1e18;
inline long long read(){
register long long x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int get(int x){ return x==fa[x]?x:fa[x]=get(fa[x]); }
inline void kruskal(){
sort(e+1,e+1+m);
for(register int i=1;i<=m;i++){
stack[++top]=i,cnt=0;
for(register int j=top;j>=2;j--) if(e[stack[j]].s<e[stack[j-1]].s) swap(stack[j],stack[j-1]);
for(register int j=1;j<=n;j++) fa[j]=j;
for(register int j=1;j<=top;j++){
int u=e[stack[j]].u,v=e[stack[j]].v;
if(get(u)==get(v)) continue;
fa[get(u)]=get(v),stack[++cnt]=stack[j];
if(cnt==n-1) break;
}
if(cnt==n-1) ans=min(ans,e[i].g*g+e[stack[cnt]].s*s);
top=cnt;
}
}
int main(){
n=read(),m=read(),g=read(),s=read();
for(register int i=1;i<=m;i++){
e[i].u=read(),e[i].v=read(),e[i].g=read(),e[i].s=read();
}
kruskal();
if(ans==1e18) puts("-1");
else printf("%lld\n",ans);
return 0;
}
CF76A Gift的更多相关文章
- CF76A.Gift [最小生成树]
CF76A.Gift 题意:noi2014魔法森林弱化版QwQ,最小化\(max(g_i)*G + max(s_i)*S\)的最小生成树 考虑按g升序加边,用已在生成树中的边和新加入的边求当前最小生成 ...
- USACO . Greedy Gift Givers
Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided to exchange gifts ...
- CF# Educational Codeforces Round 3 B. The Best Gift
B. The Best Gift time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- 快来玩“Gift大转盘”百分百赚好礼
现在开始到今年的最后一天,你天天都可以来转100%中奖的“ Gift大转盘 ”.代金券.产品折扣.精美纪念礼,没有多余规则.全部网友都可参加,转到就是你赚到,赶快转起来吧! >>活动主页& ...
- Gift Hunting(分组背包)
Gift Hunting Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- Codeforces Educational Codeforces Round 3 B. The Best Gift 水题
B. The Best Gift 题目连接: http://www.codeforces.com/contest/609/problem/B Description Emily's birthday ...
- 1002 GTY's birthday gift
GTY's birthday gift Time Limit ...
- [light oj 1328] A Gift from the Setter
1328 - A Gift from the Setter Problem setting is somewhat of a cruel task of throwing something at ...
- 119 - Greedy Gift Givers
Greedy Gift Givers The Problem This problem involves determining, for a group of gift-giving frien ...
随机推荐
- [日常摸鱼]UVA393 The Doors 简单计算几何+最短路
The Boy Next Doors 题意:给定一个固定大小的房间($x,y$的范围都是$[0,10]$),有$n$个墙壁作为障碍(都与横坐标轴垂直),每个墙壁都有两扇门分别用四个点来描述,起点 ...
- Tomcat9没有service.bat
下载个Windows版本的才有service.bat,默认是不带的. 附上tomcat9的下载地址: https://archive.apache.org/dist/tomcat/tomcat-9/v ...
- matplotlib的学习1-为什么学他
1.是一个非常强大的python画图的一个工具 2.手中有很多的数据,但是不知道如何呈现 matplotlib->能画出 线图; 散点图; 等高线图; 条形图; 柱状图; 3D 图形, 甚至是图 ...
- mysql 查询出来的内容无法显示全部
前几天在做查询的时候,由于使用了字段拼接,所以查出来的其中一列,数据很长,但是每次显示一定的长度后,后面的就无法显示 原因是因为mysql设置查询出来的长度,好像默认是1024,因为我使用的是yii2 ...
- ASP.NET Core 3.1使用Swagger API接口文档
Swagger是最流行的API开发工具,它遵循了OpenAPI规范,可以根据API接口自动生成在线文档,这样就可以解决文档更新不及时的问题.它可以贯穿于整个API生态,比如API的设计.编写API文档 ...
- 浅析 TensorFlow Runtime 技术
关于 TF Runtime 的疑问? 什么是TFRT ? TensorFlow Runtime,简称 TFRT,它提供了统一的.可扩展的基础架构层,可以极致地发挥CPU多线程性能,支持全异步编程(无锁 ...
- Unity UI适配 之 GridLayoutGroup组件下的内容适配(进度条适配)
好久没有更新博客了,蓝廋啊. 今天写一写关于GripLayoutGroup组件的屏幕适配问题,以在ARPG游戏中常用的经验条适配来举例子,以此来加深自己的记忆,以便在下次需要制作该功能时能够快速完成. ...
- intellij idea svn不能更新和提交
进入设置–version control – subversion如下图,将前边的选项的勾全部去掉,点击ok
- ElasticSearch设置用户名密码访问
版本号:7.3.1 1.需要在配置文件中开启x-pack验证, 修改config目录下面的elasticsearch.yml文件,在里面添加如下内容,并重启. xpack.security.enabl ...
- stm32之can总线过滤器研究
stm32的can总线的配置如下: CAN_InitStructure.CAN_TTCM=DISABLE;//禁止时间触发通信模式 CAN_InitStructure.CAN_A ...