pytorch——预测值转换为概率,单层感知机
softmax函数,可以将算出来的预测值转换成0-1之间的概率形式

导数的形式

import torch
import torch.nn.functional as F
x=torch.tensor([3.3,2.2,1.0])
x.requires_grad_()
y=F.softmax(x,dim=0)
print('将x转换成概率型的y',y)
print(y[0],x[0])
print('对y1进行求导,由于y是由所有xi来生成的,所以传输入的时候要把所有的x传进去')
#由于y=0.6978,0.2323,0.07. 所以有导数公式dy1/dx1=0.6978*(1-0.6978)=0.2109 dy1/dx2=-0.6978*0.2323=-0.162
print('y0对上x0-x3三个方向上的导数',torch.autograd.grad(outputs=y[0], inputs=x))
y=F.softmax(x,dim=0)
print('y1对上x0-x3三个方向上的导数',torch.autograd.grad(outputs=y[1], inputs=x))
y=F.softmax(x,dim=0)
print('y2对上x0-x3三个方向上的导数',torch.autograd.grad(outputs=y[2], inputs=x))
单层感知机

x的上标代表层数,下面的下标代表的是节点的编号。w的上标是下一层,下标的第一位是上一层的节点的编号,第二位是上一层
第0层的n个节点通过权值相乘再累加得到下一层的x,然后x通过激活函数再计算损失


pytorch——预测值转换为概率,单层感知机的更多相关文章
- 单层感知机_线性神经网络_BP神经网络
单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as ...
- TensorFlow从0到1之TensorFlow实现单层感知机(20)
简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...
- TensorFlow单层感知机实现
TensorFlow单层感知机实现 简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,只能解决线性可分的问题.虽然限制了单层感知机只能应用于线性可分 ...
- 动手学习pytorch——(3)多层感知机
多层感知机(multi perceptron,MLP).对于普通的含隐藏层的感知机,由于其全连接层只是对数据做了仿射变换,而多个仿射变换的叠加仍然是一个仿射变换,即使添加更多的隐藏层,这种设计也只能与 ...
- 非学习型单层感知机的java实现(日志三)
要求如下: 所以当神经元输出函数选择在硬极函数的时候,如果想分成上面的四个类型,则必须要2个神经元,其实至于所有的分类问题,n个神经元则可以分成2的n次方类型. 又前一节所证明出来的关系有: 从而算出 ...
- Matlab实现单层感知机网络识别字母
感知机网络的参数设置 % 具体用法: % net=newp(pr,T,TF,LF); % % pr: pr是一个R×2的矩阵,R为感知器中输入向量的维度(本例中使用35个字符表征一个字母,那么其维度为 ...
- 从头学pytorch(五) 多层感知机及其实现
多层感知机 上图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit).由于输入层不涉及计算,图3.3中的多层感知机的层数为2.由图3.3可见,隐藏 ...
- 深度学习:多层感知机和异或问题(Pytorch实现)
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \ ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
随机推荐
- 微服务痛点-基于Dubbo + Seata的分布式事务(AT)模式
前言 Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务.Seata 将为用户提供了 AT.TCC.SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案. ...
- Python读取word文档内容
1,利用python读取纯文字的word文档,读取段落和段落里的文字. 先读取段落,代码如下: 1 ''' 2 #利用python读取word文档,先读取段落 3 ''' 4 #导入所需库 5 fro ...
- VS挂接崩溃包
主要用来在用户机器上对目标进程生成dump文件,定位"卡死".Crash等问题.推荐相关工具DumpTool,WinCrashReport. DumpTool 下载 WinCras ...
- Windows 64位下安装Redis 以及 可视化工具Redis Desktop Manager的安装和使用
二.下载Windows版本的Redis 由于现在官网上只提供Linux版本的下载,所以我们只能在Github上下载Windows版本的Redis Windows版本的Redis下载地址:https:/ ...
- Elasticsearch索引生命周期管理方案
一.前言 在 Elasticsearch 的日常中,有很多如存储 系统日志.行为数据等方面的应用场景,这些场景的特点是数据量非常大,并且随着时间的增长 索引 的数量也会持续增长,然而这些场景基本上只有 ...
- 批量修改vsphere共享存储多路径选择策略
传统方式修改存储的多路径选择策略 首先说一下传统web界面操作方式: 可以看到至少需要6次才能修改完成一个.在生产环境中一般会挂载很多FC存储,这时候就需要一个批量快捷的方式来修改. 使用Powerc ...
- 通过关闭线程底层资源关闭类似synchronized及IO阻塞的情况
public class IoBlocked implements Runnable { private InputStream in; public IoBlocked(InputStream in ...
- Linux 时间同步 02 ntpd、ntpdate的区别
Linux 时间同步 02 ntpd.ntpdate的区别 目录 Linux 时间同步 02 ntpd.ntpdate的区别 [一]这样做不安全. [二]这样做不精确. [三]这样做不够优雅. ntp ...
- Oracle-序列-存储过程-视图-索引-触发器
课程介绍 1. 约束(掌握) 2. 序列(掌握) 3. 索引(掌握) 4. 视图(掌握) 5. 存储过程(掌握) 6. 自定义函数(掌握) 7. 触发器(掌握) 数据库对象的命名规则 1.对象名称必须 ...
- item系列魔法方法
class Foo: def __init__(self, name): self.name = name def __getitem__(self, item): print('getitem执行' ...