如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size。问题在于处理子矩阵间的交叉情况。

  如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的子矩阵。那么,所要求最大值不同的格子彼此间是独立的。于是现在可以只考虑要求相同的格子。

  直接计算似乎很麻烦。由于n很小,考虑一个很套路的容斥:至少0个不满足限制的方案数-至少1个不满足限制的方案数+至少2个不满足限制的方案数……于是我们可以枚举哪些矩阵不满足限制,剩下的随便填(当然要在所限制的最大值之内)。

  计算这些矩形的交和并也是一个有点麻烦的问题。可以离散化后暴力统计。这里离散化后应该每个位置表示一段区间比较方便,所以读入时++x2,++y2。由于数据范围实在太小怎么做都行。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
#define N 13
#define y1 y3
#define y2 y4
int T,r,c,n,m,row[N<<],line[N<<],flag[N<<][N<<],ans,sum,nw,nv;
bool choose[N];
struct data
{
int x1,y1,x2,y2,v,size;
int tag[N<<][N<<];
bool operator <(const data&a) const
{
return v>a.v;
}
}a[N];
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int calc(int v)
{
memset(flag,,sizeof(flag));
for (int i=;i<=n;i++)
if (a[i].v==v&&!choose[i])
for (int j=a[i].x1;j<a[i].x2;j++)
for (int k=a[i].y1;k<a[i].y2;k++)
if (a[i].tag[j][k]) flag[j][k]=;
for (int i=;i<=n;i++)
if (choose[i])
for (int j=a[i].x1;j<a[i].x2;j++)
for (int k=a[i].y1;k<a[i].y2;k++)
if (a[i].tag[j][k]) flag[j][k]=-;
int s1=,s2=;
for (int i=;i<nw;i++)
for (int j=;j<nv;j++)
if (flag[i][j]==) s1+=(row[i+]-row[i])*(line[j+]-line[j]);
else if (flag[i][j]==-) s2+=(row[i+]-row[i])*(line[j+]-line[j]);
return 1ll*ksm(v,s1)*ksm(v-,s2)%P;
}
void dfs(int k,int s,int v)
{
if (k>n)
{
if (s&) sum=(sum-calc(v)+P)%P;
else sum=(sum+calc(v))%P;
return;
}
if (a[k].v==v) choose[k]=,dfs(k+,s+,v);
choose[k]=;dfs(k+,s,v);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5010.in","r",stdin);
freopen("bzoj5010.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
r=read(),c=read(),m=read(),n=read();
for (int i=;i<=n;i++)
a[i].x1=read(),a[i].y1=read(),a[i].x2=read()+,a[i].y2=read()+,a[i].v=read(),a[i].size=,memset(a[i].tag,,sizeof(a[i].tag));
int w=,v=;
for (int i=;i<=n;i++)
row[++w]=a[i].x1,row[++w]=a[i].x2,line[++v]=a[i].y1,line[++v]=a[i].y2;
row[++w]=,row[++w]=r+;line[++v]=,line[++v]=c+;
sort(row+,row+w+);sort(line+,line+v+);
nw=unique(row,row+w+)-row-,nv=unique(line,line+v+)-line-;
for (int i=;i<=n;i++)
a[i].x1=lower_bound(row+,row+nw+,a[i].x1)-row,a[i].x2=lower_bound(row+,row+nw+,a[i].x2)-row,
a[i].y1=lower_bound(line+,line+nv+,a[i].y1)-line,a[i].y2=lower_bound(line+,line+nv+,a[i].y2)-line;
sort(a+,a+n+);
memset(flag,,sizeof(flag));
for (int i=;i<=n;i++)
for (int j=a[i].x1;j<a[i].x2;j++)
for (int k=a[i].y1;k<a[i].y2;k++)
flag[j][k]=a[i].v;
for (int i=;i<=n;i++)
for (int j=;j<nw;j++)
for (int k=;k<nv;k++)
if (flag[j][k]==a[i].v) a[i].size++,a[i].tag[j][k]=;
ans=;
for (int i=;i<nw;i++)
for (int j=;j<nv;j++)
if (flag[i][j]==) ans=1ll*ans*ksm(m,(row[i+]-row[i])*(line[j+]-line[j]))%P;
for (int i=;i<=n;i++)
{
sum=;int t=i;
while (a[t+].v==a[i].v) t++;
memset(choose,,sizeof(choose));
dfs(i,,a[i].v);
ans=1ll*ans*sum%P;
i=t;
}
cout<<ans<<endl;
}
return ;
}

BZOJ5010 FJOI2017矩阵填数(容斥原理)的更多相关文章

  1. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  2. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  3. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  4. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  5. [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)

    题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...

  6. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  7. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  8. P3813 [FJOI2017]矩阵填数

    传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...

  9. [FJOI2017]矩阵填数

    [Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...

随机推荐

  1. Android Universal Image Loader java.io.FileNotFoundException: http:/xxx/lxx/xxxx.jpg

    前段时间在使用ImageLoader异步加载服务端返回的图片时总是出现 java.io.FileNotFoundException: http://xxxx/l046/10046137034b1c0d ...

  2. 修改windows7本地策略--不能挂载磁盘和复制 -- 黏贴板-驱动器映射

    1.gpedit.msc -- > 计算机配置-- > 管理模板 -- > windows 组件 -- > 远程桌面服务 -- > 远程桌面服务主机 -- > 设备 ...

  3. UOJ400/LOJ2553 CTSC2018 暴力写挂 边分治、虚树

    传送门--UOJ 传送门--LOJ 跟隔壁通道是一个类型的 要求的式子中有两个LCA,不是很方便,因为事实上在这种题目中LCA一般都是枚举的对象-- 第二棵树上的LCA显然是动不了的,因为没有其他的量 ...

  4. HihoCoder1192 简单的树嵌入 dfs、构造

    题目传送门:http://hihocoder.com/problemset/problem/1192 大意:给出一棵$N$个点的树,边权为$1$,要求给每个点构造$M$个权值$v_1...v_M$,使 ...

  5. ubuntu 中iptables

    ubuntu中启动及关闭iptables 在ubuntu中由于不存在 /etc/init.d/iptales文件,所以无法使用service等命令来启动iptables,需要用modprobe命令. ...

  6. 忘记mysql数据库root密码

    找到配置文件my.ini  ,然后将其打开,可以选择用记事本打开,查找的方法如下: 打开后,搜索mysqld关键字 找到后,在mysqld下面添加skip-grant-tables,保存退出. PS: ...

  7. php ajax登录注册

    用户登录与退出功能应用在很多地方,而在有些项目中,我们需要使用Ajax方式进行登录,登录成功后只刷新页面局部,从而提升了用户体验度.本文将使用PHP和jQuery来实现登录和退出功能. 准备数据库 本 ...

  8. javaScript——DOM1级,DOM2级,DOM3级

    DOM0,DOM2,DOM3事件处理方式区别:http://www.qdfuns.com/notes/11861/e21736a0b15bceca0dc7f76d77c2fb5a.html JS中do ...

  9. 个人阅读作业Week5

    一.总结体会 团队项目已经进行了很多周,我们团队从刚开始的基础薄弱到现在的大家都可以运用Android来编写程序,共同完成一个app的开发使用. 刚开始做团队项目之时,我们团队就开了一个会,确定了以后 ...

  10. github心得体会 王倩倩 201303014004 计科高职13-1

    刚开始接触一门语言软件特别无从下手,尤其还是全英文的,真的是很头疼,注册的时候这个就弄了半天,在网上搜了一下教程然后又结合着老师上课讲的内容自己多做了几遍,也算是对github熟悉了,然后学会操作代码 ...