BZOJ1251序列终结者——非旋转treap
题目描述
网上有许多题,就是给定一个序列,要你支持几种操作:A、B、C、D。一看另一道题,又是一个序列 要支持几种操作:D、C、B、A。尤其是我们这里的某人,出模拟试题,居然还出了一道这样的,真是没技术含量……这样 我也出一道题,我出这一道的目的是为了让大家以后做这种题目有一个“库”可以依靠,没有什么其他的意思。这道题目 就叫序列终结者吧。 【问题描述】 给定一个长度为N的序列,每个序列的元素是一个整数(废话)。要支持以下三种操作: 1. 将[L,R]这个区间内的所有数加上V。 2. 将[L,R]这个区间翻转,比如1 2 3 4变成4 3 2 1。 3. 求[L,R]这个区间中的最大值。 最开始所有元素都是0。
输入
第一行两个整数N,M。M为操作个数。 以下M行,每行最多四个整数,依次为K,L,R,V。K表示是第几种操作,如果不是第1种操作则K后面只有两个数。
输出
对于每个第3种操作,给出正确的回答。
样例输入
1 1 3 2
1 2 4 -1
2 1 3
3 2 4
样例输出
【数据范围】
N<=50000,M<=100000。
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int x,y,z;
int n,m;
int k,L,R;
ll c;
int cnt;
int root;
int s[50010];
ll mx[50010];
int r[50010];
ll v[50010];
int ls[50010];
int rs[50010];
int size[50010];
ll a[50010];
int build(int rt)
{
r[++cnt]=rand();
size[cnt]=1;
return cnt;
}
void add(int rt,int val)
{
mx[rt]+=val;
a[rt]+=val;
v[rt]+=val;
}
void rotate(int rt)
{
swap(ls[rt],rs[rt]);
s[rt]^=1;
}
void pushup(int rt)
{
size[rt]=size[ls[rt]]+size[rs[rt]]+1;
mx[rt]=v[rt];
if(ls[rt])
{
mx[rt]=max(mx[rt],mx[ls[rt]]);
}
if(rs[rt])
{
mx[rt]=max(mx[rt],mx[rs[rt]]);
}
}
void pushdown(int rt)
{
if(s[rt])
{
if(ls[rt])
{
rotate(ls[rt]);
}
if(rs[rt])
{
rotate(rs[rt]);
}
s[rt]=0;
}
if(a[rt])
{
if(ls[rt])
{
add(ls[rt],a[rt]);
}
if(rs[rt])
{
add(rs[rt],a[rt]);
}
a[rt]=0; }
}
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;
}
pushdown(x);
pushdown(y);
if(r[x]<r[y])
{
rs[x]=merge(rs[x],y);
pushup(x);
return x;
}
else
{
ls[y]=merge(x,ls[y]);
pushup(y);
return y;
}
}
void split(int rt,int k,int &x,int &y)
{
if(!rt)
{
x=y=0;
return ;
}
pushdown(rt);
if(size[ls[rt]]<k)
{
x=rt;
split(rs[rt],k-size[ls[rt]]-1,rs[x],y);
}
else
{
y=rt;
split(ls[rt],k,x,ls[y]);
}
pushup(rt);
}
int main()
{
srand(20011112);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
root=merge(root,build(i));
}
while(m--)
{
scanf("%d",&k);
scanf("%d%d",&L,&R);
if(k==1)
{
scanf("%lld",&c);
split(root,L-1,x,y);
split(y,R-L+1,y,z);
add(y,c);
root=merge(merge(x,y),z);
}
else if(k==2)
{
split(root,L-1,x,y);
split(y,R-L+1,y,z);
rotate(y);
root=merge(merge(x,y),z);
}
else
{
split(root,L-1,x,y);
split(y,R-L+1,y,z);
printf("%lld\n",mx[y]);
root=merge(merge(x,y),z);
}
}
}
BZOJ1251序列终结者——非旋转treap的更多相关文章
- BZOJ1552[Cerc2007]robotic sort&BZOJ3506[Cqoi2014]排序机械臂——非旋转treap
题目描述 输入 输入共两行,第一行为一个整数N,N表示物品的个数,1<=N<=100000. 第二行为N个用空格隔开的正整数,表示N个物品最初排列的编号. 输出 输出共一行,N个用空格隔开 ...
- [bzoj3173]最长上升子序列_非旋转Treap
最长上升子序列 bzoj-3173 题目大意:有1-n,n个数,第i次操作是将i加入到原有序列中制定的位置,后查询当前序列中最长上升子序列长度. 注释:1<=n<=10,000,开始序列为 ...
- BZOJ5063旅游——非旋转treap
题目描述 小奇成功打开了大科学家的电脑. 大科学家打算前往n处景点旅游,他用一个序列来维护它们之间的顺序.初 始时,序列为1,2,...,n. 接着,大科学家进行m次操作来打乱顺序.每次操作有6步: ...
- BZOJ3223文艺平衡树——非旋转treap
此为平衡树系列第二道:文艺平衡树您需要写一种数据结构,来维护一个有序数列,其中需要提供以下操作: 翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 ...
- 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)
在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...
- 4923: [Lydsy1706月赛]K小值查询 平衡树 非旋转Treap
国际惯例的题面:这种维护排序序列,严格大于的进行操作的题都很套路......我们按照[0,k],(k,2k],(2k,inf)分类讨论一下就好.显然第一个区间的不会变化,第二个区间的会被平移进第一个区 ...
- 非旋转Treap
Treap是一种平衡二叉树,同时也是一个堆.它既具有二叉查找树的性质,也具有堆的性质.在对数据的查找.插入.删除.求第k大等操作上具有期望O(log2n)的复杂度. Treap可以通过节点的旋 ...
- 非旋转Treap:用运行时间换调试时间的有效手段
非旋转Treap:用运行时间换调试时间的有效手段 Hello大家好,我们今天来聊一聊非旋转Treap. 相信各位或多或少都做过些序列上的问题.如果水题我们考虑暴力:不强制在线我们可能用过莫队和待修 ...
- [bzoj3196][Tyvj1730]二逼平衡树_树套树_位置线段树套非旋转Treap/树状数组套主席树/权值线段树套位置线段树
二逼平衡树 bzoj-3196 Tyvj-1730 题目大意:请写出一个维护序列的数据结构支持:查询给定权值排名:查询区间k小值:单点修改:查询区间内定值前驱:查询区间内定值后继. 注释:$1\le ...
随机推荐
- 【Codeforces 1120A】Diana and Liana
Codeforces 1120 A 题意:给\(n\)个数\(a_1..a_n\),要从其中删去小于等于\(n-m\times k\)个数,使得将这个数组分成\(k\)个一段的序列时有至少一段满足以下 ...
- C++面试基础知识
C++经典面试题(最全,面中率最高 1.new.delete.malloc.free关系 delete会调用对象的析构函数,和new对应free只会释放内存,new调用构造函数.malloc与free ...
- MySQL(一)MySQL基础介绍
最近的学习内容是数据库相关的一些知识,主要以MySQL为主,参考书籍——<MySQL必知必会> MySQL学习及下载地址:https://dev.mysql.com/ MySQL学习使用注 ...
- 软概(lesson 1):Javaweb实现用户登录界面
一.问题描述 二.网站系统开发所需要的技术 网站界面开发:html 后台所需要的技术:java基本内容,数据库语句,连接数据库实现增删改查 本题所用技术:数据库链接以及增加功能,基本html语句 技术 ...
- LOJ2540 PKUWC2018 随机算法 状压DP
传送门 两种$DP$: ①$f_{i,j}$表示前$i$次选择,最大独立集为$j$时达到最大独立集的方案总数,转移:$a.f_{i,j}+=f_{i+1,j+2^k}$(保证$k$加入后符合条件):$ ...
- cp 命令有坑
cp 是个很常用的命令, 基本语法为 cp -v a b 把文件a 复制为文件b(-v为显示做了什么,这是非常安全的做法,建议新手添加此参数) 参数说明: -a:此选项通常在复制目录时使用, ...
- FFMPEG指令
FFmpeg是一个用于音视频处理的自由软件,被广泛用于音视频开发.FFmpeg功能强大,本文主要介绍如何使用FFmpeg命令行工具进行简单的视频处理. 安装FFmpeg可以在官网下载各平台软件包或者静 ...
- Docker管理工具 - Swarm部署记录
之前介绍了Docker集群管理工具-Kubernetes部署记录,下面介绍另一个管理工具Swarm的用法,Swarm是Docker原生的集群管理软件,与Kubernetes比起来比较简单. Swarm ...
- cordova打包webapp
cordova打包webapp 在项目开发中,需要将h5页面打包成app,这个时候我们可以使用cordova来打包.在官方文档中,我们可以了解到创建一个app十分简单,你的电脑上有nodejs就行,我 ...
- LINUX第三次实践:程序破解
LINUX第三次实践:程序破解 标签(空格分隔): 20135328陈都 一.掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即"空指令".执行到NOP ...