BZOJ3732Network——kruskal重构树+倍增+LCA/最小生成树+倍增
题目描述
给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).
现在有 K个询问 (1 < = K < = 20,000)。
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
输入
第一行: N, M, K。
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
输出
对每个询问,输出最长的边最小值是多少。
样例输入
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1
样例输出
5
5
4
4
7
4
5
提示
1 <= N <= 15,000
1 <= M <= 30,000
1 <= d_j <= 1,000,000,000
1 <= K <= 15,000
首先根据最小生成树的性质可以知道两点间路径上最长边最小的那条路径,就是最小生成树上两点间的路径——因为最小生成树是按边权从小到大加边,所以保证两点间路径上的边都尽可能的小。那么只要先把最小生成树求出来,其他的边就没有用了。对于最小生成树求解,一种做法是倍增维护g[i][j]表示以i节点向上跳2j步路径上的边权最大值。今天来介绍另一种做法——kruskal重构树。什么是kruskal重构树呢?就是把最小生成树上的边从小到大,对于每一条边a-b边权为c,就把重构树上a所在子树的根节点和b所在子树的根节点(可以是自己)分别连到一个新建节点上,将那个点作为这两个点的父节点,而新建那个点的点权就是c。最后形成的一棵二叉树就是kruskal重构树。kruskal重构树是一个大根堆且两叶子节点的lca点权就是这两点在最小生成树上路径上的最大边权。这样对于每次询问只要找到两点lca就行了。
最小生成树+倍增
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
int n,m;
int next[100050];
int to[100050];
int val[100050];
int head[15010];
int f[15010][20];
int g[15010][20];
int d[15010];
int F[15010];
int tot=0;
int sum;
int num;
struct node
{
int x;
int y;
int v;
}a[50001];
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
}
int cmp(node a,node b)
{
return a.v<b.v;
}
int find(int x)
{
if(F[x]==x)
{
return x;
}
return F[x]=find(F[x]);
}
void dfs(int x,int fx)
{
f[x][0]=fx;
d[x]=d[fx]+1;
for(int j=1;(1<<j)<=n;j++)
{
f[x][j]=f[f[x][j-1]][j-1];
g[x][j]=max(g[f[x][j-1]][j-1],g[x][j-1]);
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fx)
{
g[to[i]][0]=val[i];
dfs(to[i],x);
}
}
}
int lca(int x,int y)
{
int total=0;
if(d[x]<d[y])
{
swap(x,y);
}
int deep=d[x]-d[y];
for(int i=0;i<=18;i++)
{
if((deep&(1<<i))!=0)
{
total=max(total,g[x][i]);
x=f[x][i];
}
}
if(x==y)
{
return total;
}
for(int j=18;j>=0;j--)
{
if(f[x][j]!=f[y][j])
{
total=max(total,max(g[x][j],g[y][j]));
x=f[x][j];
y=f[y][j];
}
}
return total=max(max(g[x][0],g[y][0]),total);
}
int main()
{
scanf("%d%d",&n,&m);int q;scanf("%d",&q);
for(int i=1;i<=n;i++)
{
F[i]=i;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].v);
}
sort(a+1,a+1+m,cmp);
num=0;
sum=0;
for(int j=1;j<=m;j++)
{
int fx=find(a[j].x);
int fy=find(a[j].y);
if(fx!=fy)
{
F[fx]=fy;
num++;
sum+=a[j].v;
add(a[j].x,a[j].y,a[j].v);
add(a[j].y,a[j].x,a[j].v);
}
if(num==n-1)
{
break;
}
}
g[1][0]=0;
dfs(1,1);
int A,B;
for(int i=1;i<=q;i++)
{
scanf("%d%d",&A,&B);
printf("%d\n",lca(A,B));
}
}
kruskal重构树
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct node
{
int x;
int y;
int z;
}a[30010];
int cnt;
int tot;
int A,B;
int n,m,k;
int d[30010];
int fa[15010];
int ga[30010];
int to[100010];
int head[100010];
int next[100010];
int f[30010][17];
int g[30010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
int get(int x)
{
if(ga[x]==x)
{
return x;
}
return ga[x]=get(ga[x]);
}
int find(int x)
{
if(fa[x]==x)
{
return x;
}
return fa[x]=find(fa[x]);
}
bool cmp(node a,node b)
{
return a.z<b.z;
}
void dfs(int x,int fa)
{
d[x]=d[fa]+1;
for(int i=1;i<=16;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dfs(to[i],x);
}
}
}
int lca(int x,int y)
{
if(d[x]<d[y])
{
swap(x,y);
}
int dep=d[x]-d[y];
for(int i=0;i<=16;i++)
{
if((dep&(1<<i))!=0)
{
x=f[x][i];
}
}
for(int i=16;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
x=f[x][0];
return g[x];
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
{
fa[i]=i;
}
for(int i=1;i<=2*n;i++)
{
ga[i]=i;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
}
sort(a+1,a+1+m,cmp);
cnt=n;
for(int i=1;i<=m;i++)
{
int fx=find(a[i].x);
int fy=find(a[i].y);
if(fx!=fy)
{
fa[fx]=fy;
cnt++;
int gx=get(a[i].x);
int gy=get(a[i].y);
g[cnt]=a[i].z;
ga[gx]=cnt;
ga[gy]=cnt;
f[gx][0]=cnt;
f[gy][0]=cnt;
add(gx,cnt);
add(cnt,gx);
add(gy,cnt);
add(cnt,gy);
}
}
dfs(cnt,cnt);
for(int i=1;i<=k;i++)
{
scanf("%d%d",&A,&B);
printf("%d\n",lca(A,B));
}
}
BZOJ3732Network——kruskal重构树+倍增+LCA/最小生成树+倍增的更多相关文章
- 水壶-[Kruskal重构树] [解题报告]
水壶 本来从不写针对某题的题解,但因为自己实在是太蠢了,这道题也神TM的恶心,于是就写篇博客纪念一下 H水壶 时间限制 : 50000 MS 空间限制 : 565536 KB 评测说明 : 2s,51 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra
题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...
- BZOJ3545&3551[ONTAK2010]Peaks——kruskal重构树+主席树+dfs序+树上倍增
题目描述 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只 ...
- LOJ #2718. 「NOI2018」归程(Dijkstra + Kruskal重构树 + 倍增)
题意 给你一个无向图,其中每条边有两个值 \(l, a\) 代表一条边的长度和海拔. 其中有 \(q\) 次询问(强制在线),每次询问给你两个参数 \(v, p\) ,表示在 \(v\) 出发,能开车 ...
- Gym - 101173H Hangar Hurdles (kruskal重构树/最小生成树+LCA)
题目大意:给出一个n*n的矩阵,有一些点是障碍,给出Q组询问,每组询问求两点间能通过的最大正方形宽度. 首先需要求出以每个点(i,j)为中心的最大正方形宽度mxl[i][j],可以用二维前缀和+二分或 ...
- UVA1265 Tour Belt Kruskal重构树、倍增、树上差分
题目传送门 题意:定义$Tour \, Belt$为某张图上的一个满足以下条件的点集:①点集中至少有$2$个点②任意两点互相连通③图上两个端点都在这个点集中的边的权值的最小值严格大于图上只有一个端点在 ...
- [SCOI2013]摩托车交易 kruskal重构树(最大生成树) 倍增
---题面--- 题解: 这题想法简单,,,写起来真的是失智,找了几个小时的错误结果是inf没开到LL范围.... 首先我们需要找到任意两点之间能够携带黄金的上限值,因为是在经过的道路权值中取min, ...
随机推荐
- GZIP压缩提高网络传输效率
[spring]通过GZIP压缩提高网络传输效率(可以实现任何资源的gzip压缩.包括AJAX) gzip是http协议中使用的一种加密算法,客户端向web服务器端发出了请求后,通常情况下服务器端会将 ...
- Tensorflow[源码安装时bazel行为解析]
0. 引言 通过源码方式安装,并进行一定程度的解读,有助于理解tensorflow源码,本文主要基于tensorflow v1.8源码,并借鉴于如何阅读TensorFlow源码. 首先,自然是需要去b ...
- 深度:Hadoop对Spark五大维度正面比拼报告!
每年,市场上都会出现种种不同的数据管理规模.类型与速度表现的分布式系统.在这些系统中,Spark和hadoop是获得最大关注的两个.然而该怎么判断哪一款适合你? 如果想批处理流量数据,并将其导入HDF ...
- 解决System.Runtime.CompilerServices.ExtensionAttribute..ctor 与 ‘ExtensionAttribute’ is ambiguous in the namespace ‘System.Runtime.CompilerServices’ 问题
从VSS上获取以前的老项目,编译时报System.Runtime.CompilerServices.ExtensionAttribute..ctor 网上写的“删除 Newtonsoft.Json.N ...
- C# 实现表单的自动化测试<通过程序控制一个网页>
学历代表你的过去,能力代表你的现在,学习代表你的将来 十年河东,十年河西,莫欺少年穷 学无止境,精益求精 C# 实现表单的自动化测试,这标题看着就来劲!那么,如何通过C#程序控制一个网页呢? 在此,以 ...
- Jquery 图片延迟加载技术
参考网址:http://code.ciaoca.com/jquery/lazyload/ 延迟加载能大大增加你网站的加载速度! 需要引入以下文件<Jq文件也是少不了的>: <scri ...
- [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...
- 汇编 OD 标志位 置位相关指令
知识点: l 标志位 置位相关指令 l 标志寄存器PSW 标志寄存器PSW(程序状态字寄存器PSW) 标志寄存器PSW是一个16为的寄存器.它反映了CPU运算的状态特征并且存放某些控制标志. ...
- Git push 时如何避免出现 "Merge branch 'master' of ..."
在使用 Git 的进行代码版本控制的时候,往往会发现在 log 中出现 "Merge branch 'master' of ..." 这句话,如下图所示.日志中记录的一般为开发过程 ...
- NodeMCU学习(二) : 如何使用NodeMCU进行开发
NodeMCU的GPIO口 Arduino的引脚号与NodeMCU的GPIO口直接对应,NodeMCU的GPIO函数pinMode, digitalWrite, DigitalRead也是和Ardu ...