[poj P2976] Dropping tests
[poj P2976] Dropping tests
Time Limit: 1000MS Memory Limit: 65536K
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is
. However, if you drop the third test, your cumulative average becomes
.
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0Sample Output
83 100Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
Source
01分数规划入门题。
这个不等式会经常看到:sigma(ai)/sigma(bi)>=(或<=)k
对于这题来说就是,找出最大的k,使得100*sigma(ai)/sigma(bi)>=k。
我们尝试化简上式。
因为bi>=0,所以sigma(bi)>=0,100*sigma(ai)>=k*sigma(bi)
100*sigma(ai)-k*sigma(bi)>=0
sigma(100*ai-k*bi)>=0
那么,我们只要先枚举一个k,将100*ai-k*bi作为关键字排序,再选出前n-k大的,判断一下sum是否非负就行了。
然后我们发现,上式满足单调性,枚举可以改为用二分。所以总复杂度是O(nlog分数)。
然后这一题我先开大100倍,然后最后再缩小100倍,但是这也会有精度误差。
总之,开大的倍数越大,误差越小,但效率越低,但也低不到哪里去qwq
code:
#include<cstdio> #include<cstring> #include<algorithm> #define LL long long #define M ((L)+(R)>>1) using namespace std; ,lim=; int n,k,L,R,ans,final; LL sum; struct ob {LL a,b,c;}o[N]; bool cmp(ob x,ob y) {return x.c>y.c;} bool jug(LL lv) { ; i<=n; i++) o[i].c=o[i].a*lim-lv*o[i].b; sort(o+,o++n,cmp); sum=; ; i<=n-k; i++) sum+=o[i].c; ; } int main() { while (scanf("%d%d",&n,&k)!=EOF,n|k) { ; i<=n; i++) scanf("%lld",&o[i].a); ; i<=n; i++) scanf("%lld",&o[i].b); ,R=lim; L<=R; ) ; ; final=ans/; ans%=; ) final+=; printf("%d\n",final); } ; }
[poj P2976] Dropping tests的更多相关文章
- POJ - 2976 Dropping tests && 0/1 分数规划
POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...
- 二分算法的应用——最大化平均值 POJ 2976 Dropping tests
最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...
- POJ 2976 Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions:17069 Accepted: 5925 De ...
- POJ 2976 Dropping tests 【01分数规划+二分】
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2976 Dropping tests(01分数规划入门)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11367 Accepted: 3962 D ...
- POJ 2976 Dropping tests 01分数规划 模板
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6373 Accepted: 2198 ...
- POJ 2976 Dropping tests (0/1分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4654 Accepted: 1587 De ...
- Poj 2976 Dropping tests(01分数规划 牛顿迭代)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...
- poj 2976 Dropping tests 二分搜索+精度处理
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8349 Accepted: 2919 De ...
随机推荐
- RVIZ实现模拟控制小车
RVIZ是一个强大的可视化工具,可以看到机器人的传感器和内部状态. 1.安装rbx1功能包Rbx1是国外一本关于ros的书中的配套源码,包含了机器人的基本仿真.导航.路径规划.图像处理.语音识别等等. ...
- 【LeetCode每天一题】Word Search(搜索单词)
Given a 2D board and a word, find if the word exists in the grid.The word can be constructed from le ...
- 解析web应用处理流程
客户端(浏览器.app.ajax.爬虫程序)通过域名(dns绑定)向服务器发送http协议,域名可以泛解析到机群.机器,服务器接收http请求报文,通过WSGI协议链接框架做代码逻辑层的处理,解析完逻 ...
- sql 存储过程参数为空则不作为条件
/****** Object: StoredProcedure [dbo].[GetCommonGroupByRegion] Script Date: 03/23/2017 17:31:18 **** ...
- linux 生成密钥,并向git服务器导入公钥
1. server1 上使用haieradmin用户 ,先清理之前的ssh登录记录,rm –rf ~/.ssh , 运行ssh-keygen –t rsa(只需回车下一步即可,无需输入任何密 ...
- 4.Python3运算符
4.1算数运算符(以下假设变量a为10,变量b为21) 实例操作: print(3 + 5) #数字3与5相加 print(3 - 5) #数字3与5相减 print(3 * 5) #数字3与5相乘 ...
- MSG结构体和WndProc窗口过程详解
MSG结构体和WndProc窗口过程对于Windows编程非常重要,如果不了解它们,可以说就没有学会Windows编程. MSG结构体 MSG 结构体用来表示一条消息,各个字段的含义如下: typed ...
- eclipse自定义快捷键(模板)
window->Preferences->Java->Editor->Templates https://blog.csdn.net/changqing5818/article ...
- web前端开发学习路线图
Web前端是一个入行门槛较低的开发技术,但更是近几年热门的职业,web前端不仅薪资高发展前景好,是很多年轻人向往的一个职业,想学习web前端,那么你得找到好的学习方法,以下就给大家分享一份适合新手小白 ...
- JavaScript 序列化、转义
JavaScript 序列化.转义 序列化 // 将对象转换为字符串 JSON.stringify() // 将字符串转换为对象类型 JSON.parse() 转义 // URl中未转义的字符 de ...
.
. However, if you drop the third test, your cumulative average becomes
.