poj 3177 Redundant Paths(边双连通分量+缩点)
链接:http://poj.org/problem?id=3177
题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走。现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立的路。两条独立的路是指:没有公共边的路,但可以经过同一个中间顶点。
分析:在同一个边双连通分量中,任意两点都有至少两条独立路可达,所以同一个边双连通分量里的所有点可以看做同一个点。
缩点后,新图是一棵树,树的边就是原无向图的桥。
现在问题转化为:在树中至少添加多少条边能使图变为双连通图。
结论:添加边数=(树中度为1的节点数+1)/2
具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。
其实求边双连通分量和求强连通分量差不多,每次访问点的时候将其入栈,当low[u]==dfn[u]时就说明找到了一个连通的块,则栈内的所有点都属于同一个边双连通分量,因为无向图要见反向边,所以在求边双连通分量的时候,遇到反向边跳过就行了。
网上有一种错误的做法是:因为每一个双连通分量内的点low[]值都是相同的,则dfs()时,对于一条边(u,v),只需low[u]=min(low[u],low[v]),这样就不用缩点,最后求度数的时候,再对于每条边(u,v)判断low[u]是否等于low[v],若low[u]!=low[v],则不是同一个边双连通分量,度数+1即可.....
咋看之下是正确的,但是这种做法只是考虑了每一个强连通分量重只有一个环的情况,如果有多个环,则会出错。
比如这组数据:
16 21
1 8
1 7
1 6
1 2
1 9
9 16
9 15
9 14
9 10
10 11
11 13
11 12
12 13
11 14
15 16
2 3
3 5
3 4
4 5
3 6
7 8
答案是1,上面错误的做法是0
大家自己画图慢慢研究吧。。。下面贴代码
AC代码:
#include<cstdio>
#include<cstring>
const int N=+;
const int M=+; struct EDGE
{
int v,next;
}edge[M*];
int first[N],low[N],dfn[N],belong[N],degree[N],sta[M],instack[M];
int g,cnt,top,scc;
int min(int a,int b)
{
return a<b?a:b;
}
void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
void Tarjan(int u,int fa)
{
int i,v;
low[u]=dfn[u]=++cnt;
sta[++top]=u;
instack[u]=;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(i==(fa^))
continue;
if(!dfn[v])
{
Tarjan(v,i);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
scc++;
while()
{
v=sta[top--];
instack[v]=;
belong[v]=scc;
if(v==u)
break;
}
}
}
int main()
{
int n,m,u,v,i,j;
scanf("%d%d",&n,&m);
g=cnt=top=scc=;
memset(first,-,sizeof(first));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
memset(degree,,sizeof(degree));
for(i=;i<m;i++)
{
scanf("%d%d",&u,&v);
{
AddEdge(u,v);
AddEdge(v,u);
}
}
for(i=;i<=n;i++)
if(!dfn[i])
Tarjan(,-);
for(i=;i<=n;i++)
{
for(j=first[i];j!=-;j=edge[j].next)
{
v=edge[j].v;
if(belong[i]!=belong[v])
degree[belong[i]]++;
}
}
int sum=;
for(i=;i<=n;i++)
if(degree[i]==)
sum++;
int ans=(sum+)/;
printf("%d\n",ans);
return ;
}
poj 3177 Redundant Paths(边双连通分量+缩点)的更多相关文章
- POJ 3177 Redundant Paths (边双连通+缩点)
<题目链接> <转载于 >>> > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...
- POJ 3177 Redundant Paths 边双(重边)缩点
分析:边双缩点后,消环变树,然后答案就是所有叶子结点(即度为1的点)相连,为(sum+1)/2; 注:此题有坑,踩踩更健康,普通边双缩短默认没有无向图没有重边,但是这道题是有的 我们看,low数组是我 ...
- POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)
这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...
- tarjan算法求桥双连通分量 POJ 3177 Redundant Paths
POJ 3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12598 Accept ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- POJ 3177 Redundant Paths(边双连通分量)
[题目链接] http://poj.org/problem?id=3177 [题目大意] 给出一张图,问增加几条边,使得整张图构成双连通分量 [题解] 首先我们对图进行双连通分量缩点, 那么问题就转化 ...
- POJ - 3177 Redundant Paths (边双连通缩点)
题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...
- [双连通分量] POJ 3177 Redundant Paths
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13712 Accepted: 5821 ...
- poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11047 Accepted: 4725 ...
随机推荐
- MySQL主从同步原理
mysql主从复制用途 实时灾备,用于故障切换 读写分离,提供查询服务 备份,避免影响业务 主从部署必要条件 主库开启binlo日志(设置log-bin参数) 主从server-id不同 从库可以连同 ...
- mybatis多数据源切换
文章转自https://yq.aliyun.com/articles/188540?t=t1 https://www.liaoxuefeng.com/article/00151054582348974 ...
- Git-本地项目和远程项目关联
此处记录将本地项目与码云仓库关联步骤 1. 本地 Git 配置 配置一下一些基本的信息 $ git config--global user.name "Your Name" $ g ...
- 【转】取模(mod)与取余(rem)的区别——Matlab学习笔记
昨天在学习Matlab的数学函数时,教程中提到取模(mod)与取余(rem)是不同的,今天在网上具体查了一下: 通常取模运算也叫取余运算,它们返回结果都是余数.rem和mod唯一的区别在于: 当 ...
- VUE2第五天学习---自定义指令
阅读目录 1.理解VUE中的自定义指令 回到顶部 1.理解VUE中的自定义指令 默认核心指令有 (v-model 和 v-show), 但是有时候我们需要用到自定义指令,在vue中,代码复用主要形式和 ...
- git排错
解决: 将远程仓库中除.git以外的所有文件删除,然后执行 git config --bool core.bare true 然后客户端重新push即可解决问题 还要注意远程仓库权限方面...
- python中#!/usr/bin/python与#!/usr/bin/env python的区别
目的是在运行python脚本的时候告诉操作系统我们要用python解释器去运行py脚本 所以我们在第一句往往会写如下两句中的其中一句: #!/usr/bin/python 或 >#!/usr/b ...
- 零基础入门到精通:Python大数据与机器学习之Pandas-数据操作
在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python ...
- C#的delegate简单练习
delegate中文的意思为委托. 在很久之前,Insus.NET有写过一篇<用一个简单的例子来演绎事件委托>http://www.cnblogs.com/insus/p/3732075. ...
- International Programming Retreat Day(2018.11.17)
时间:2018.11.17地点:北京国华投资大厦