链接:http://poj.org/problem?id=3177

题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走。现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立的路。两条独立的路是指:没有公共边的路,但可以经过同一个中间顶点。

分析:在同一个边双连通分量中,任意两点都有至少两条独立路可达,所以同一个边双连通分量里的所有点可以看做同一个点。

缩点后,新图是一棵树,树的边就是原无向图的桥。

现在问题转化为:在树中至少添加多少条边能使图变为双连通图。

结论:添加边数=(树中度为1的节点数+1)/2

具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。

其实求边双连通分量和求强连通分量差不多,每次访问点的时候将其入栈,当low[u]==dfn[u]时就说明找到了一个连通的块,则栈内的所有点都属于同一个边双连通分量,因为无向图要见反向边,所以在求边双连通分量的时候,遇到反向边跳过就行了。

网上有一种错误的做法是:因为每一个双连通分量内的点low[]值都是相同的,则dfs()时,对于一条边(u,v),只需low[u]=min(low[u],low[v]),这样就不用缩点,最后求度数的时候,再对于每条边(u,v)判断low[u]是否等于low[v],若low[u]!=low[v],则不是同一个边双连通分量,度数+1即可.....

咋看之下是正确的,但是这种做法只是考虑了每一个强连通分量重只有一个环的情况,如果有多个环,则会出错。

比如这组数据:

16 21
1 8
1 7
1 6
1 2
1 9
9 16
9 15
9 14
9 10
10 11
11 13
11 12
12 13
11 14
15 16
2 3
3 5
3 4
4 5
3 6
7 8

答案是1,上面错误的做法是0

大家自己画图慢慢研究吧。。。下面贴代码

AC代码:

 #include<cstdio>
#include<cstring>
const int N=+;
const int M=+; struct EDGE
{
int v,next;
}edge[M*];
int first[N],low[N],dfn[N],belong[N],degree[N],sta[M],instack[M];
int g,cnt,top,scc;
int min(int a,int b)
{
return a<b?a:b;
}
void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
void Tarjan(int u,int fa)
{
int i,v;
low[u]=dfn[u]=++cnt;
sta[++top]=u;
instack[u]=;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(i==(fa^))
continue;
if(!dfn[v])
{
Tarjan(v,i);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
scc++;
while()
{
v=sta[top--];
instack[v]=;
belong[v]=scc;
if(v==u)
break;
}
}
}
int main()
{
int n,m,u,v,i,j;
scanf("%d%d",&n,&m);
g=cnt=top=scc=;
memset(first,-,sizeof(first));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
memset(degree,,sizeof(degree));
for(i=;i<m;i++)
{
scanf("%d%d",&u,&v);
{
AddEdge(u,v);
AddEdge(v,u);
}
}
for(i=;i<=n;i++)
if(!dfn[i])
Tarjan(,-);
for(i=;i<=n;i++)
{
for(j=first[i];j!=-;j=edge[j].next)
{
v=edge[j].v;
if(belong[i]!=belong[v])
degree[belong[i]]++;
}
}
int sum=;
for(i=;i<=n;i++)
if(degree[i]==)
sum++;
int ans=(sum+)/;
printf("%d\n",ans);
return ;
}

poj 3177 Redundant Paths(边双连通分量+缩点)的更多相关文章

  1. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  2. POJ 3177 Redundant Paths 边双(重边)缩点

    分析:边双缩点后,消环变树,然后答案就是所有叶子结点(即度为1的点)相连,为(sum+1)/2; 注:此题有坑,踩踩更健康,普通边双缩短默认没有无向图没有重边,但是这道题是有的 我们看,low数组是我 ...

  3. POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)

    这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...

  4. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  5. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  6. POJ 3177 Redundant Paths(边双连通分量)

    [题目链接] http://poj.org/problem?id=3177 [题目大意] 给出一张图,问增加几条边,使得整张图构成双连通分量 [题解] 首先我们对图进行双连通分量缩点, 那么问题就转化 ...

  7. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  8. [双连通分量] POJ 3177 Redundant Paths

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 ...

  9. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

随机推荐

  1. 转载 【.NET基础】--委托、事件、线程(2) https://www.cnblogs.com/chengzish/p/4569912.html

    [.NET基础]--委托.事件.线程(2)   本文介绍event的使用以及原理,本文接上一篇文章的Demo继续[下载上一篇Demo] 上一篇我们在类(dg_SayHi.cs)里面定义代理了4个Del ...

  2. 配置Linux下vim自动缩进等功能

    从终端打开配置文件: vim ~/.vimrc 添加如下代码: set tabstop=4 set softtabstop=4 set shiftwidth=4 set autoindent set ...

  3. IDEA学生免费申请教程

    1.点击网址,进入申请页面https://www.jetbrains.com/zh/student/ 2.由于网页是全英文的,可以用浏览器将页面翻译成中文版,更方便操作 3.因为没有大学的邮箱地址,所 ...

  4. Vue 改变数组中对象的属性不重新渲染View的解决方案

    Vue 改变数组中对象的属性不重新渲染View的解决方案 在解决问题之前,我们先来了解下 vue响应性原理: Vue最显著的一个功能是响应系统-- 模型只是一个普通对象,修改对象则会更新视图.受到ja ...

  5. C# 语法一 构造函数

    1.构造函数的执行顺序 2.静态变量和成员变量的区别 代码示例: using System; using System.Collections.Generic; using System.Linq; ...

  6. QT写TXT文件

    #include <QDir> //头文件 QDir *TEST = new QDir;    bool exist = TEST->exists("TEST") ...

  7. C语言程序设计II—第二周教学

    第二周教学总结(4/3-10/3) 教学内容 根据邹欣老师的建议,临时修改教学计划,将最后一周的内容:第十二章 文件,提前讲授. 课前准备 在博客园发布作业:2019春第二周作业 作业根据本周讲授的& ...

  8. 读《Top benefits of continuous integration》有感

    看到一片文章<Top benefits of continuous integration>,这张图画的很棒.将整个CI流程各阶段,列举出来了. 作者在文章里面介绍了CI和TDD,以及采用 ...

  9. 15-(基础入门篇)GPRS(Air202)GPIO控制点亮一个灯

    https://www.cnblogs.com/yangfengwu/p/9967027.html 现在点亮它,说一下哈,都过去好久了,不知道大家都在用哪个版本的库 http://www.openlu ...

  10. asp.net web api集成微信服务(使用Senparc微信SDK)- z

    /// <summary> /// 微信请求转发控制器 /// </summary> [RoutePrefix("weixin")] public clas ...