#-*- coding: utf-8 -*-

import pandas as pd
from random import shuffle
import matplotlib.pyplot as plt #导入Matplotlib datafile = '../data/model.xls'
data = pd.read_excel(datafile)
data = data.as_matrix()
shuffle(data) p = 0.8 #设置训练数据比例
train = data[:int(len(data)*p),:]
test = data[int(len(data)*p):,:] #构建LM神经网络模型
from keras.models import Sequential #导入神经网络初始化函数
from keras.layers.core import Dense, Activation #导入神经网络层函数、激活函数 netfile = '../tmp/net.model' #构建的神经网络模型存储路径 net = Sequential() #建立神经网络
net.add(Dense(input_dim = 3, output_dim = 10)) #添加输入层(3节点)到隐藏层(10节点)的连接
net.add(Activation('relu')) #隐藏层使用relu激活函数
net.add(Dense(input_dim = 10, output_dim = 1)) #添加隐藏层(10节点)到输出层(1节点)的连接
net.add(Activation('sigmoid')) #输出层使用sigmoid激活函数
net.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics=['accuracy']) #编译模型,使用adam方法求解 net.fit(train[:,:3], train[:,3], nb_epoch=50, batch_size=1) #训练模型,循环1000次
net.save_weights(netfile) #保存模型
#print(net.predict_classes(train[:,:3]))
# [[1]
# [1]
# [1]
# [1]
# [1]
# [1]
# [1]
# [1]
# [0]
# [1]
# [0]
# [1]
# [1]
# [0]
predict_result = net.predict_classes(train[:,:3]).reshape(len(train)) #预测结果变形
#print(predict_result)
#[1 1 1 1 1 1 1 1 0 1 0 1 1 0 0]
'''这里要提醒的是,keras用predict给出预测概率,predict_classes才是给出预测类别,而且两者的预测结果都是n x 1维数组,而不是通常的 1 x n''' # from cm_plot import * #导入自行编写的混淆矩阵可视化函数
# cm_plot(train[:,3], predict_result).show() #显示混淆矩阵可视化结果 from sklearn.metrics import roc_curve #导入ROC曲线函数 predict_result = net.predict(test[:,:3]).reshape(len(test))
fpr, tpr, thresholds = roc_curve(test[:,3], predict_result, pos_label=1)
plt.plot(fpr, tpr, linewidth=2, label = 'ROC of LM') #作出ROC曲线
plt.xlabel('False Positive Rate') #坐标轴标签
plt.ylabel('True Positive Rate') #坐标轴标签
plt.ylim(0,1.05) #边界范围
plt.xlim(0,1.05) #边界范围
plt.legend(loc=4) #图例
plt.show() #显示作图结果

reshape、shuffle、save_weights的更多相关文章

  1. AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

    接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言 ...

  2. Python random模块sample、randint、shuffle、choice随机函数概念和应用

    Python标准库中的random函数,可以生成随机浮点数.整数.字符串,甚至帮助你随机选择列表序 列中的一个元素,打乱一组数据等. random中的一些重要函数的用法: 1 ).random() 返 ...

  3. 【Python】随机数random模块randint、shuffle、random、sample、choice、uniform、

    1 ).random() 返回0<=n<1之间的随机实数n:2 ).choice(seq) 从序列seq中返回随机的元素:3 ).getrandbits(n) 以长整型形式返回n个随机位: ...

  4. Python random模块sample、randint、shuffle、choice随机函数

    一.random模块简介 Python标准库中的random函数,可以生成随机浮点数.整数.字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等. 二.random模块重要函数 1 ).ra ...

  5. CNN中各类卷积总结:残差、shuffle、空洞卷积、变形卷积核、可分离卷积等

    CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中 ...

  6. 大数据框架对比:Hadoop、Storm、Samza、Spark和Flink

    转自:https://www.cnblogs.com/reed/p/7730329.html 今天看到一篇讲得比较清晰的框架对比,这几个框架的选择对于初学分布式运算的人来说确实有点迷茫,相信看完这篇文 ...

  7. sqoop命令,mysql导入到hdfs、hbase、hive

    1.测试MySQL连接 bin/sqoop list-databases --connect jdbc:mysql://192.168.1.187:3306/trade_dev --username ...

  8. 大数据框架对比:Hadoop、Storm、Samza、Spark和Flink——flink支持SQL,待看

    简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才 ...

  9. 数据框架对比:Hadoop、Storm、Samza、Spark和Flink——flink支持SQL,待看

    简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才 ...

随机推荐

  1. 多线程操作的方法(sleep,)setPriority(Thread.MIN_PRIORITY);yield();

    在多线程中所有的操作方法都是从Thread类开始的,所有的操作基本都在Thread类中. 第一取得线程名字 a,在Thread类中,可以通过getName()方法,获得线程的名字,可以通过setNam ...

  2. Git-本地项目和远程项目关联

    此处记录将本地项目与码云仓库关联步骤 1. 本地 Git 配置 配置一下一些基本的信息 $ git config--global user.name "Your Name" $ g ...

  3. mysql5.6.8源码安装

    内核: [root@opop ~]# cat /etc/centos-release CentOS release 6.8 (Final)[root@opop ~]# uname -aLinux op ...

  4. 洛谷 P1396 营救

    题目链接 https://www.luogu.org/problemnew/show/P1396 题目描述 “咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动的热泪 ...

  5. RocketMQ阅读注意

    1 队列个数设置 producer发送消息时候设置,特别注意:同一个topic仅当第一次创建的时候设置有效,以后修改无效,除非修改broker服务器上的consume.json文件,

  6. DIV实现水平或垂直滚动条

    添加样式: 在html中,需要创建2层div来实现.一个div包含另一个div: 效果:

  7. SA的一个辣鸡trick

    基础板子 namespace SA{ int x[400010],y[400010],SA[400010],rk[400010],ht[400010],t[400010]; int st[19][40 ...

  8. React 等框架使用 index 做 key 的问题

    React 等框架使用 index 做 key 的问题 假如有两个树,一个是之前,一个是更变之后,我们抽象成两种可能性. 插入内容在最后 插入内容在最前 关于插在中间,原理一样,就不阐述. 使用 ul ...

  9. Xamarin开发的一个简单画图程序分享

    最近Xamarin比较火,于是稍微看了下,感觉接触过MVC的都应该能很快上手,还挺有意思,于是忍不住写了个简单的画图程序,之前看帖子有人说装不上或者无法部署,估计我比较幸运,编译完了一次就安装成功了, ...

  10. webpack教程(一)——初体验

    首先全局安装webpack,再npm初始化一个项目,并局部安装webpack开发工具 $ npm install webpack -g npm init (项目名称) $ npm install we ...