reshape、shuffle、save_weights
#-*- coding: utf-8 -*- import pandas as pd
from random import shuffle
import matplotlib.pyplot as plt #导入Matplotlib datafile = '../data/model.xls'
data = pd.read_excel(datafile)
data = data.as_matrix()
shuffle(data) p = 0.8 #设置训练数据比例
train = data[:int(len(data)*p),:]
test = data[int(len(data)*p):,:] #构建LM神经网络模型
from keras.models import Sequential #导入神经网络初始化函数
from keras.layers.core import Dense, Activation #导入神经网络层函数、激活函数 netfile = '../tmp/net.model' #构建的神经网络模型存储路径 net = Sequential() #建立神经网络
net.add(Dense(input_dim = 3, output_dim = 10)) #添加输入层(3节点)到隐藏层(10节点)的连接
net.add(Activation('relu')) #隐藏层使用relu激活函数
net.add(Dense(input_dim = 10, output_dim = 1)) #添加隐藏层(10节点)到输出层(1节点)的连接
net.add(Activation('sigmoid')) #输出层使用sigmoid激活函数
net.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics=['accuracy']) #编译模型,使用adam方法求解 net.fit(train[:,:3], train[:,3], nb_epoch=50, batch_size=1) #训练模型,循环1000次
net.save_weights(netfile) #保存模型
#print(net.predict_classes(train[:,:3]))
# [[1]
# [1]
# [1]
# [1]
# [1]
# [1]
# [1]
# [1]
# [0]
# [1]
# [0]
# [1]
# [1]
# [0]
predict_result = net.predict_classes(train[:,:3]).reshape(len(train)) #预测结果变形
#print(predict_result)
#[1 1 1 1 1 1 1 1 0 1 0 1 1 0 0]
'''这里要提醒的是,keras用predict给出预测概率,predict_classes才是给出预测类别,而且两者的预测结果都是n x 1维数组,而不是通常的 1 x n''' # from cm_plot import * #导入自行编写的混淆矩阵可视化函数
# cm_plot(train[:,3], predict_result).show() #显示混淆矩阵可视化结果 from sklearn.metrics import roc_curve #导入ROC曲线函数 predict_result = net.predict(test[:,:3]).reshape(len(test))
fpr, tpr, thresholds = roc_curve(test[:,3], predict_result, pos_label=1)
plt.plot(fpr, tpr, linewidth=2, label = 'ROC of LM') #作出ROC曲线
plt.xlabel('False Positive Rate') #坐标轴标签
plt.ylabel('True Positive Rate') #坐标轴标签
plt.ylim(0,1.05) #边界范围
plt.xlim(0,1.05) #边界范围
plt.legend(loc=4) #图例
plt.show() #显示作图结果
reshape、shuffle、save_weights的更多相关文章
- AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)
接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文..... 前言 ...
- Python random模块sample、randint、shuffle、choice随机函数概念和应用
Python标准库中的random函数,可以生成随机浮点数.整数.字符串,甚至帮助你随机选择列表序 列中的一个元素,打乱一组数据等. random中的一些重要函数的用法: 1 ).random() 返 ...
- 【Python】随机数random模块randint、shuffle、random、sample、choice、uniform、
1 ).random() 返回0<=n<1之间的随机实数n:2 ).choice(seq) 从序列seq中返回随机的元素:3 ).getrandbits(n) 以长整型形式返回n个随机位: ...
- Python random模块sample、randint、shuffle、choice随机函数
一.random模块简介 Python标准库中的random函数,可以生成随机浮点数.整数.字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等. 二.random模块重要函数 1 ).ra ...
- CNN中各类卷积总结:残差、shuffle、空洞卷积、变形卷积核、可分离卷积等
CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中 ...
- 大数据框架对比:Hadoop、Storm、Samza、Spark和Flink
转自:https://www.cnblogs.com/reed/p/7730329.html 今天看到一篇讲得比较清晰的框架对比,这几个框架的选择对于初学分布式运算的人来说确实有点迷茫,相信看完这篇文 ...
- sqoop命令,mysql导入到hdfs、hbase、hive
1.测试MySQL连接 bin/sqoop list-databases --connect jdbc:mysql://192.168.1.187:3306/trade_dev --username ...
- 大数据框架对比:Hadoop、Storm、Samza、Spark和Flink——flink支持SQL,待看
简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才 ...
- 数据框架对比:Hadoop、Storm、Samza、Spark和Flink——flink支持SQL,待看
简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才 ...
随机推荐
- 【一】mongodb安装及配置
一.mongodb安装 1.下载并解压 wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel62-3.2.0.tgz tar ...
- LoadRunner 11安装Micosoft Visual C++ 2005 SP1时提示命令行选项语法错误
如果安装LoadRunner 11时弹窗提示"Micosoft Visual C++ 2005 SP1 可再发行组件包(X86):'命令行选项语法错误.键入命令 / ? 可获得帮助信息'&q ...
- Linux安装consul
1.下载并解压consul # cd /opt/ # mkdir consul # chmod 777 consul #cd consul #wget https://releases.hashico ...
- [转]系统架构演变--集中式架构-垂直拆分-分布式服务-SOA(服务治理)-微服务
一.系统架构演变 1.1. 集中式架构 当网站流量很小时,只需一个应用,将所有功能都部署在一起,以减少部署节点和成本.此时,用于简化增删改查工作量的数据访问框架(ORM)是影响项目开发的关键. 存在的 ...
- 如何迅速入门STM32
我想说,为了学习单片机而去学习单片机的思路不对. 你问,如何系统地入门学习stm32? 本身就是一个错误的问题.假如你会使用8051 , 会写C语言,那么STM32本身并不需要刻意的学习. 你要考虑的 ...
- 开源的mqtt服务器
看介绍挺强大,开源,可运行在Linux和Windows,文档中有相关测试工具,及客户端介绍. 希望有机会应用.http://www.emqtt.com/
- Java 大数、高精度模板
介绍: java中用于操作大数的类主要有两个,一个是BigInteger,代表大整数类用于对大整数进行操作,另一个是BigDecimal,代表高精度类,用于对比较大或精度比较高的浮点型数据进行操作.因 ...
- javascript调用ActiveX接口失败的解决方案及使用心得
前段时间公司做了个比较大的项目,需要用到ocx控件,我厂大部分项目都采用C#.net,而winform程序条用ocx控件接口是相对简单的,但是javascript调用ocx接口,却和winform的用 ...
- 使用canvas实现一个圆球的触壁反弹
HTML <canvas id="canvas" width="500" height="500" style="borde ...
- Centos7.4安装kvm虚拟机(使用virt-manager管理)
之前介绍了使用WebVirtMgr或Openstack来部署及管理kvm虚拟机,下面简单介绍centos7.4下使用virt-manager部署及管理kvm虚拟机的做法: 0)KVM是什么 KVM(K ...