洛谷P2057 【SHOI2007】善意的投票
洛谷P2057 【SHOI2007】善意的投票
这道题是最小割的一个经典应用:划分集合。
题目的意思就是就是将所有的小朋友分为两个集合:同意睡觉和不同意睡觉的。不同的集合之间的边都要断开。
我们设\(S\)为投票结果为不想睡觉的小朋友(颜色为0)的集合;\(T\)为投票结果为想睡觉的小朋友(颜色为1)的集合。然后对于一个小朋友\(i\),设他的“颜色”为x,那么我们就连两条边\((S,i,[x!=0]),(i,T,[x!=1])\)。第一条边表示该小朋友属于\(S\)集合,第二条边表示该小朋友属于\(T\)集合。
因为投与自己意愿相反的票会产生冲突,所以需要给定流量。
然后对于一对好朋友\(i,j\),我们连\((i,j,1)\)的双向边。
实际操作中,流量为0的边自然可以不连。
答案就是最小割。这是因为,如果\(S\)和\(T\)之间还有流量,说明还有至少一对有冲突的好朋友存在。从这个角度来想,那么答案和最小割等价的。
如果要问最后小朋友们投的是那些票,那就看最小割割的是哪些边。如果割的是\((i,j)\),表示保留冲突。如果割的是\((s,i)\)或\((i,T)\),表示\(i\)投了意愿相反的票。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 305
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m;
int S,T;
struct load {
int to,next;
int flow;
}s[N*N<<2];
int h[N],cnt=1;
void add(int i,int j,int flow) {
s[++cnt]=(load) {j,h[i],flow};h[i]=cnt;
s[++cnt]=(load) {i,h[j],0};h[j]=cnt;
}
int dis[N],gap[N];
int dfs(int v,int maxf) {
if(v==T) return maxf;
int ret=0;
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]+1==dis[v]) {
int dlt=dfs(to,min(maxf-ret,s[i].flow));
s[i].flow-=dlt;
s[i^1].flow+=dlt;
ret+=dlt;
if(ret==maxf||dis[S]>=n+2) return ret;
}
}
if(!(--gap[dis[v]])) dis[S]=n+2;
gap[++dis[v]]++;
return ret;
}
int sap() {
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
gap[0]=n+2;
int ans=0;
while(dis[S]<n+2) ans+=dfs(S,1<<29);
return ans;
}
void Init() {
cnt=1;
memset(h,0,sizeof(h));
}
int main() {
n=Get(),m=Get();
Init();
T=n+1;
for(int i=1;i<=n;i++) {
int a=Get();
if(a==1) add(S,i,1);
else add(i,T,1);
}
for(int i=1;i<=m;i++) {
int a=Get(),b=Get();
add(a,b,1),add(b,a,1);
}
cout<<sap()<<"\n";
return 0;
}
洛谷P2057 【SHOI2007】善意的投票的更多相关文章
- 洛谷 P2057 [SHOI2007]善意的投票 解题报告
P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...
- 洛谷P2057 [SHOI2007]善意的投票 题解
题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...
- [洛谷P2057][SHOI2007]善意的投票
题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...
- 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流
正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...
- [洛谷P2057][bzoj1934]善意的投票(最大流)
题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来 ...
- P2057 [SHOI2007]善意的投票 (最大流)
题目 P2057 [SHOI2007]善意的投票 解析 网络流的建模都如此巧妙. 我们把同意的意见看做源点\(s\),不同意的意见看做汇点\(t\). 那我们\(s\)连向所有同意的人,\(t\)连向 ...
- P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查
P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查 拿来练网络流的qwq 思路:如果i不同意,连边(i,t,1),否则连边(s,i,1).好朋友x,y间连边(x,y,1)(y ...
- P2057 [SHOI2007]善意的投票 最小割
$ \color{#0066ff}{ 题目描述 }$ 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...
- Luogu P2057 [SHOI2007]善意的投票
题目链接 \(Click\) \(Here\) 考虑模型转换.变成文理分科二选一带收益模型,就一波带走了. 如果没有见过这个模型的话,这里讲的很详细. #include <bits/stdc++ ...
- 【题解】Luogu P2057 [SHOI2007]善意的投票
原题传送门 我们一眼就能看出这是一道最小割的题 我们设不睡觉这种状态为S,睡觉这种状态为T 对于每个人,如果不想睡觉,就从S向这个人连流量为1的边,否则,就从这个人向T连流量为1的边 对于每一对朋友, ...
随机推荐
- 记一次IDEA编译器调优
前言: 我们知道,IDEA是用Java写的,那么他肯定也存在虚拟机的调优的问题,那么今天我们就对它进行开刀. 下面是默认参数 位置在:C:\Program Files\JetBrains\Intell ...
- Angular Forms - 自定义 ngModel 绑定值的方式
在 Angular 应用中,我们有两种方式来实现表单绑定--"模板驱动表单"与"响应式表单".这两种方式通常能够很好的处理大部分的情况,但是对于一些特殊的表单控 ...
- VB.Net DataSet 填充資料庫內容
'導入命名空間Imports System.Data.OleDb '定義變量 Dim ds As DataSet = New DataSet() Dim i, cn As Integer Dim Sq ...
- 项目开发版本控制----Git
版本控制的工具我早之前用的svn,后来换成了git.同样是版本控制,为什么要换呢?肯定是有原因的啦~ 一.Git和SVN的比较 svn的优缺点 优点: 1.管理方便,逻辑明确,符合一般人思维习惯. 2 ...
- EmitMapper的使用小结
最近公司开发项目前端使用一个js框架,后端使用ef,js前台读取的json采用实体的dto来进行生成. 在网上看到了EmitMapper相对其他映射框架处理速度可以更快,就拿来用了.下面是代码中常用的 ...
- jsp使用servlet实现文件上传
1.在index.jsp中写入以下代码 <form method="post" action="demo3" enctype="multipar ...
- js 如何移除一个匿名函数的绑定事件
大家都知道 addEventListener的用法 绑定事件 例如 element.addEventListener(type,handler,false); element是dom元素 type是事 ...
- Linux 中的命令链接操作符
&& 与 || 配合 eg: cat test.sh #!/bin/bash [ -e /etc/hosts ] && echo "ok" || e ...
- 【读书笔记】iOS-后台运行模式
苹果在关于后台模式的文档中称:“这个配置项应该尽可能少的使用,而且最好只给那些提供通知服务的应用使用.如果有在后台运行的替代方法,就应该使用替代方法.比如,如果应用能使用显著位置变化接口来接受位置变动 ...
- Testlink Testlink在Windows下的安装
Testlink在Windows下的安装 by:授客 QQ:1033553122 测试环境 testlink-1.9.14 下载地址:http://pan.baidu.com/s/1pLrcu ...