题目链接:https://www.luogu.org/problemnew/show/P1031

题目描述
有 $N$ 堆纸牌,编号分别为 $1,2,…,N$。每堆上有若干张,但纸牌总数必为 $N$ 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 $1$ 堆上取的纸牌,只能移到编号为 $2$ 的堆上;在编号为 $N$ 的堆上取的纸牌,只能移到编号为 $N-1$ 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 $N=4$,$4$堆纸牌数分别为:

①$9$ ②$8$ ③$17$ ④$6$
移动 $3$ 次可达到目的:

从 ③ 取 $4$ 张牌放到 ④ $(9,8,13,10)$ -> 从 ③ 取 $3$ 张牌放到 ② $(9,11,10,10)$ -> 从 ② 取 $1$ 张牌放到① $(10,10,10,10)$。

输入输出格式
输入格式:
两行

第一行为:$N$($N$ 堆纸牌,$1 \le N \le 100$)

第二行为:$A_1,A_2, … ,A_n$($N$堆纸牌,每堆纸牌初始数,$1 \le A_i \le 10000$)

输出格式:
一行:即所有堆均达到相等时的最少移动次数。

输入输出样例
输入样例#1:
4
9 8 17 6
输出样例#1:
3

题解:

首先,由于总牌数是 $N$ 的整数倍,因此肯定是可以有解的。每个牌堆最终的牌数就是总牌数除以堆数,设为 $k$。

其次,任意相邻的两个牌堆之间,最多只进行一次移牌操作,否则就是多余操作(这是很显然的)。因此,不管怎么样,移动次数最多也就 $N-1$ 次。

那么,如何判断这个间隔是否需要进行移牌操作?

其实很简单,假设这个间隔是牌堆 $i$ 和 牌堆 $i+1$ 的间隔,那么只要前 $i$ 堆牌数之和不等于 $k \cdot i$,就要在牌堆 $i$ 和牌堆 $i+1$ 之间进行一次移牌操作。

原因也很简单,左边的牌数不对,右边的牌数自然也不对,如果不在当前这个间隔移牌,就不可能让左右两边的牌数变对,因此必须移牌。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int n,k,s[];
int main()
{
cin>>n;
for(int i=,x;i<=n;i++) cin>>x, s[i]=s[i-]+x;
k=s[n]/n;
int ans=;
for(int i=;i<=n;i++) if(s[i]!=k*i) ans++;
cout<<ans<<endl;
}

Luogu 1031 - 均分纸牌 - [有意思的思维题]的更多相关文章

  1. luogu P1031 均分纸牌

    题目很简单,但是可以学一学贪心策略 把纸牌均匀分布,从左往右推掉不用的纸牌 #include <iostream> using namespace std; int main() { in ...

  2. [NOIP2005] 过河【Dp,思维题,缩点】

    Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...

  3. 洛谷 P4749 - [CERC2017]Kitchen Knobs(差分转换+dp,思维题)

    题面传送门 一道挺有意思的思维题. 首先有一个 obvious 的结论,就是对于每个炉子,要么转到哪里都符合条件,要么存在唯一的最大值.对于转到哪儿都符合条件的炉子我们 duck 不必考虑它,故我们只 ...

  4. NOIP2002 均分纸牌

    题一 均分纸牌 (存盘名: NOIPG1) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为: ...

  5. 【洛谷p1031】均分纸牌

    [博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这 ...

  6. 洛谷 P1031 均分纸牌

    P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...

  7. 均分纸牌(Noip2002)

    1320:[例6.2]均分纸牌(Noip2002) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 3537     通过数: 1839 [题目描述] 有n堆纸牌,编 ...

  8. [CF1244C] The Football Season【数学,思维题,枚举】

    Online Judge:Luogu,Codeforces Round #592 (Div. 2) C Label:数学,思维题, 枚举 题目描述 某球队一共打了\(n\)场比赛,总得分为\(p\), ...

  9. code vs 1098 均分纸牌(贪心)

    1098 均分纸牌 2002年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解   题目描述 Description 有 N 堆纸牌 ...

随机推荐

  1. OpenWrt 对外网开放vsftp服务和samba服务

    对WAN开放vsFTP OpenWrt默认启动了vsftp服务, 在Luci上没找到配置界面, 但是后台是有这个服务的, 如果在Openwrt的lan下, 可以直接使用FileZilla之类的客户端连 ...

  2. centos7设置服务为开机自启动(以crond.serivce为例)

    本文转自:https://blog.51cto.com/mrxiong2017/2084790 一.设置crond.serivice服务为开机自启动 步骤1:查看crond.serivce服务的自启动 ...

  3. 基于R语言的时间序列指数模型

    时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Lon ...

  4. 实战UITableview深度优化

    演示项目下载地址:https://github.com/YYProgrammer/YYTableViewDemo 项目里的低性能版是常规写法实现的tableview,高性能版是做了相关优化后的tabl ...

  5. Dynamic CRM 2016 的备份/恢复/重新部署

    参考:1.https://community.dynamics.com/crm/b/crmviking/archive/2016/02/03/backup-and-restore-strategies ...

  6. PHPStorm + Homestead + Xdebug + Chrome Xdebug Helper 调试配置

    话说 PHPStorm 写起代码来非常带感,各种提示补全和纠错,以及在 L5 中的命名空间功能更是强大到感动(新建类自动添加命名空间,自动引入命名空间,返回参数命名空间纠正等等).当然它的调试功能更是 ...

  7. pyCoreImage Learn

    目录 PyCoreImage 安装 高斯模糊滤镜的例子 使用详细步骤说明 常见操作 滤镜操作 打印所有的滤镜列表 打印某个滤镜的详细信息 使用 zoomBlur 滤镜 使用 mono 滤镜 使用叠加率 ...

  8. Spark性能优化指南——基础篇

    本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一 ...

  9. Mysql数据按天分区,定期删除

    需求: 1.日志表需要按天分区 2.只保留一个月数据 方案: 1.创建两个事件,一个事件生成未来需要的分区,另一个事件定期检查过期数据(移除分区) 2.创建事件每小时执行一次,删除事件每天执行一次 3 ...

  10. 【gulp】gulp-file-include 合并 html 文件

    gulp-file-include 是 gulp 插件,它提供了一个 include 方法让我们可以像后端模板那样把公共部分的页面导入进来. 安装依赖包(包括了 gulp-file-include 和 ...