题意

给\(n(n \le 10^6)\)个数的序列\(a\),求一个递增序列\(b\)使得\(\sum_{i=1}^{n} |a_i-b_i|\)最小。

分析

神题啊不会。

具体证明看黄源河论文《左偏树的特点及其应用》

思路:

  1. 将问题转化为求一个不降序列\(b\)。
  2. 如果\(a_1 \le a_2 \le ... \le a_n\),则最优解显然是\(b_i=a_i\)
  3. 如果\(a_1 \ge a_2 \ge ... \ge a_n\),则最优解显然是\(b_i=w\),其中\(w\)是\(a\)序列的中位数\(a_{\left \lfloor \frac{n+1}{2} \right \rfloor}\)

    如果有两段\(a_1, a_2, ..., a_n\)和\(a_{n+1}, a_{n+2}, ..., a_{m}\),其中左边的最优解是\(b_i=u(1 \le i \le n)\),右边的最优解是\(b_i=w(n < i \le m)\),则
  4. 当\(u \le w\),则最优解显然是\(b_i=u(1 \le i \le n), b_i=w(n < i \le m)\)
  5. 当\(u > w\)时,则最优解是\(b_i=x(1 \le i \le m)\),其中\(x\)是\(a\)序列的中位数\(a_{\left \lfloor \frac{m+1}{2} \right \rfloor}\),证明如下:

首先我们来证明,对于任意序列\(a\),如果最优解是\(b_i=w(1 \le i \le n)\),其中\(w\)是中位数,那么对于所有的\(w \le w ' \le c_1\)或\(c_n \le w ' \le w\),解\(b_i=c_i(1 \le i \le n)\)都不会比解\(b_i=w ' (1 \le i \le n)\)更优。

然后我并没有看懂那个归纳证明QAQ

就是这句:

因为如果解变坏了,由归纳假设可知a[2],a[3],...,a[n]的中位数w>u,这样的话,最优解就应该为(u, u, ... , u, w, w, ... ,w ),矛盾。

现在回到\(2\),显然最优解中\(b_n \le u, b_{n+1} \ge w\),然后根据刚刚我们证明的东西,则最优解中肯定\(b_i=b_n(1 \le i < n), b_i=b_{n+1}(n < i \le m)\)。

也就是说,给你\(m\)个点要求找两个值\(u \le w\),使得前\(n\)个点到\(u\)的距离和加上剩下的点到\(w\)的距离和最短。显然一组最优解是\(u=w=a_{\left \lfloor \frac{m+1}{2} \right \rfloor}\)

至于思路\(1\)中怎么转化问题,就很简单了:

\(\sum_{i=1}^{n} |a_i-b_i| = \sum_{i=1}^{n} |(a_i-i)-(b_i-i)|\)

则令新的\(a ' _ i = a_i - i\)就行了。

至于思路\(2\)中怎么讨论,一个长度为\(n\)的不降序列可以看做\(n\)个不升序列。

题解

所以我们从左到右合并,如果新加进来的数和前面的数不构成不升序列,则合并相邻的。

于是问题转化为如何维护中位数。

然后发现对于正整数\(n, m\)有\(\left \lfloor \frac{n+1}{2} \right \rfloor + \left \lfloor \frac{m+1}{2} \right \rfloor \ge \left \lfloor \frac{n+m+1}{2} \right \rfloor\),所以我们只需要维护两个区间的中位数及比中位数小的数即可。然后合并的时候再考虑删掉一些数即可。

所以删除最大的数、合并两个东西这个活交给左偏树。

#include <bits/stdc++.h>
using namespace std;
inline int getint() {
int x=0;
char c=getchar();
for(; c<'0'||c>'9'; c=getchar());
for(; c>='0'&&c<='9'; x=x*10+c-'0', c=getchar());
return x;
}
const int N=1000105;
int q[N], s[N], t[N], n;
struct node *null;
struct node {
node *c[2];
int d, w;
void init(int _w) {
c[0]=c[1]=null;
w=_w;
d=0;
}
void up() {
if(c[0]->d<c[1]->d) {
swap(c[0], c[1]);
}
d=c[1]->d+1;
}
}Po[N], *iT=Po, *root[N];
inline node *newnode(int w) {
iT->init(w);
return iT++;
}
inline node *merge(node *l, node *r) {
if(l==null || r==null) {
return l==null?r:l;
}
if(l->w<r->w) {
swap(l, r);
}
l->c[1]=merge(l->c[1], r);
l->up();
return l;
}
int main() {
null=newnode(-(~0u>>1));
null->c[0]=null->c[1]=null;
n=getint();
int top=0;
for(int i=1; i<=n; ++i, ++top) {
root[top+1]=newnode(t[i]=getint()-i);
q[top+1]=i;
s[top+1]=1;
for(; top && root[top]->w>root[top+1]->w; --top) {
s[top]+=s[top+1];
root[top]=merge(root[top], root[top+1]);
for(int mid=(i-q[top]+2)>>1; s[top]>mid; --s[top], root[top]=merge(root[top]->c[0], root[top]->c[1]));
}
}
long long ans=0;
q[top+1]=0;
top=0;
for(int i=1; i<=n; ++i) {
for(; q[top+1]==i; ++top);
ans+=abs(t[i]-root[top]->w);
}
printf("%lld\n", ans);
return 0;
}

【BZOJ】1367: [Baltic2004]sequence的更多相关文章

  1. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  2. BZOJ 1367 [Baltic2004]sequence 解题报告

    BZOJ 1367 [Baltic2004]sequence Description 给定一个序列\(t_1,t_2,\dots,t_N\),求一个递增序列\(z_1<z_2<\dots& ...

  3. BZOJ 1367: [Baltic2004]sequence [可并堆 中位数]

    1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1111  Solved: 439[Submit][ ...

  4. bzoj 1367: [Baltic2004]sequence

    1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MB Description Input Output 一个整数R Sa ...

  5. 1367: [Baltic2004]sequence

    1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MB Submit: 1090  Solved: 432 [Submit ...

  6. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  7. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  8. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  9. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

随机推荐

  1. 重温WCF之构建一个简单的WCF(一)(2)通过Windows Service寄宿服务和WCF中实现操作重载

    参考地址:http://www.cnblogs.com/zhili/p/4039111.html 一.如何在Windows Services中寄宿WCF服务 第一步:创建Windows 服务项目,具体 ...

  2. 【JAVA多线程中使用的方法】

    一.sleep和wait的区别. 1.wait可以指定时间,也可以不指定. 而sleep必须制定. 2.在同步的时候,对于CPU的执行权和以及锁的处理不同. wait:释放执行权,释放锁. sleep ...

  3. 学习SQLAlchemy Core

    有时间了就要慢慢看,死守DJANGO ORM,明显没有SQLAlchemy有优势. 因为SQLAlchemy针对整个PYTHON都是有用的. 找了本书,慢慢撸. <Essential.SQLAl ...

  4. 设计工具 -uml

  5. unfortunately launcher has stopped

    设定虚拟机的配置.

  6. TCP状态转换图详解

    以下对几个关键的中间状态进行说明: 三次握手: LISTEN:表示服务器的某个SOCKET处于监听状态,可以进行连接了. SYN_SENT:表示客户端的某个SOCKET与服务器进行connect时,首 ...

  7. Ring3无敌进程让你的进程变得和smss.exe一样支持64

    本帖最后由 奋斗丶小Z 于 2016-6-6 13:39 编辑 此函数可以启用或关闭开启之后变得和系统进程一样被杀系统直接蓝屏系统进程也是此函数实现的上图 可以用于进程保护 <ignore_js ...

  8. input实时监控和获取焦点的问题,oninput,ononfocus

    1.input监控实时输入问题,google浏览器使用oninput,其他浏览器(IE6/7/8)使用onpropertychange var ie = !!window.ActiveXObject; ...

  9. 圆形图片CircleImageView

    github源码路径: https://github.com/hdodenhof/CircleImageView 第一步:将CircleImageView复制 第二步:将attrs.xml复制 第三步 ...

  10. hibernate快速入门

    第一步:下载Hibernate的开发包: http://sourceforge.net/projects/hibernate/files/hibernate3 第二步:Hibernate框架目录结构: ...