第一问:

设$a[i]$表示使用$[1,i]$的数字$n$次形成的数组里有多少个$\gcd=1$。

考虑容斥,则$a[i]=i^n-\sum_{j=2}^i a[\lfloor\frac{i}{j}\rfloor]$,可以分$\sqrt{i}$段算出。

$ans=\sum_{i=l}^r a[\lfloor\frac{m}{i}\rfloor]$,也可以分$\sqrt{m}$段算出。

注意到只有$\sqrt{m}$个$a[i]$被使用到,所以只计算它们即可。

时间复杂度$O(m)$。

第二问:

设$s[i][j]$表示$1$到$j$里有多少数字与$i$互质,可以通过$O(m^2)$的预处理求出。

对于一个询问,枚举所有$k$,计算$k|lcm$的答案。

将$k$分解质因数,则使用的$n$个数字相应质因子的指数不能比它小。

考虑容斥,转化成求有多少数字对应指数都比它小。

设$k$的质因子乘积为$mul$,则方案数为$(\sum_{d|\frac{k}{mul}}s[mul][\lfloor\frac{m}{d}\rfloor])^n$。

时间复杂度$O(m\log m)$。

#include<cstdio>
const int N=1001,M=7100,P=1000000007;
int T,type,t,n,m,l,r,i,j;
int f[N][N],s[N][N],G[N],V[M],NXT[M],mul[N],g[N],v[M],nxt[M],ed;
int p[N],a[10000001],b[N],ans;
inline void up(int&a,int b){a+=b;while(a>=P)a-=P;}
inline int pow(int a,int b){int t=1;for(;b;b>>=1,a=1LL*a*a%P)if(b&1)t=1LL*t*a%P;return t;}
inline void init(int x,int n){
int t=0,i,j;
for(i=2;i<=x;i=j+1)j=x/(x/i),up(t,1LL*(j-i+1)*a[x/i]%P);
a[x]=(pow(x,n)+P-t)%P;
}
void dfs(int x,int y,int z){
if(x==t){
if(z==1)return;
mul[y>0?y:-y]=z;
v[++ed]=y;nxt[ed]=g[i];g[i]=ed;
return;
}
dfs(x+1,y,z),dfs(x+1,-y*a[x],z*b[x]);
}
inline void cal(int x){
up(ans,p[m]);
for(int i=g[x];i;i=nxt[i]){
if(v[i]>0)up(ans,p[a[v[i]]]);
else up(ans,P-p[a[-v[i]]]);
}
}
int main(){
scanf("%d%d",&T,&type);
if(type==1){
a[1]=1;
while(T--){
scanf("%d%d%d%d",&n,&m,&l,&r);ans=0;
for(i=1;i<=m;i=m/(m/i)+1)v[++t]=m/i;
while(t)init(v[t--],n);
for(i=l;i<=r;i=j+1){
j=m/(m/i);
if(j>r)j=r;
up(ans,1LL*(j-i+1)*a[m/i]%P);
}
printf("%d\n",ans);
}
}else{
for(i=0;i<N;i++)f[0][i]=f[i][0]=f[i][i]=i;
for(i=2;i<N;i++)for(j=1;j<i;j++)f[i][j]=f[j][i]=f[i-j][j];
for(i=1;i<N;i++)for(j=1;j<N;j++)s[i][j]=s[i][j-1]+(f[i][j]==1);
for(i=1;i<N;i++)for(j=i;j<N;j+=i)V[++ed]=i,NXT[ed]=G[j],G[j]=ed;
for(ed=0,i=2;i<N;i++){
for(n=i,t=0,j=2;j<=n;j++)if(n%j==0){
for(m=1;n%j==0;n/=j,m*=j);
a[t]=m,b[t++]=j;
}
dfs(0,1,1);
}
while(T--){
scanf("%d%d%d%d",&n,&m,&l,&r);ans=0;
for(i=1;i<=m;i++)p[i]=pow(i,n);
for(i=2;i<=m;i++)for(a[i]=0,j=G[i/mul[i]];j;j=NXT[j])a[i]+=s[i][m/V[j]];
while(l<=r)cal(l++);
printf("%d\n",ans);
}
}
return 0;
}

  

BZOJ4635 : 数论小测验的更多相关文章

  1. 来试试这个来自静态代码分析工具PVS Studio提供C++的小测验吧

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:来试试这个来自静态代码分析工具PVS Studio提供C++的小测验吧.

  2. Java web 小测验

    题目要求: 1登录账号:要求由6到12位字母.数字.下划线组成,只有字母可以开头:(1分) 2登录密码:要求显示“• ”或“*”表示输入位数,密码要求八位以上字母.数字组成.(1分) 3性别:要求用单 ...

  3. codeforces 615 D. Multipliers (数论 + 小费马定理 + 素数)

    题目链接: codeforces 615 D. Multipliers 题目描述: 给出n个素数,这n个素数的乘积等于s,问p的所有因子相乘等于多少? 解题思路: 需要求出每一个素数的贡献值,设定在这 ...

  4. noip考前抱佛脚 数论小总结

    exCRT 求解韩信点兵问题,常见的就是合并不同\(mod\). 先mo一发高神的板子 for(R i=2;i<=n;++i){ ll Y1,Yi,lcm=Lcm(p[i],p[1]); exg ...

  5. oracle12c数据库第一周小测验

    一.单选题(共4题,30.4分) 1 (  )是位于用户与操作系统之间的一层数据管理软件.数据库在建立.使用和维护时由其统一管理.统一控制.   A. A.DBMS B. B.DB C. C.DBS ...

  6. [译] Block 小测验

    本文来源于 ParseBlog 的其中一篇博文 <Objective-C Blocks Quiz> 如果您觉得我的博客对您有帮助,请通过关注我的新浪微博  MicroCai 支持我,谢谢! ...

  7. JS小测验

    1.编写一个方法method(),判断一个数能否同时被3和5整除 <div class="one" onClick="method()"> func ...

  8. jQuery小测验

    1.在div元素中,包含了一个<span>元素,通过has选择器获取<div>元素中的<span>元素的语法是? 提示使用has() $(div:has(span) ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. IOS管理文件和目录NSFileManager

    1.常见的NSFileManager文件方法 -(NSData *)contentsAtPath:path //从一个文件读取数据 -(BOOL)createFileAtPath: path cont ...

  2. 【JAVA线程间通信技术】

    之前的例子都是多个线程执行同一种任务,下面开始讨论多个线程执行不同任务的情况. 举个例子:有个仓库专门存储货物,有的货车专门将货物送往仓库,有的货车则专门将货物拉出仓库,这两种货车的任务不同,而且为了 ...

  3. [LeetCode] Same Tree

    Given two binary trees, write a function to check if they are equal or not. Two binary trees are con ...

  4. 证明tmult_ok的正确性

    csapp page124. practice problem 2.35 /* Determine whether arguments can be multiplied without overfl ...

  5. 关于WCF的一些注意事项

    1.服务代理,建立通道的方法,要注意及时关掉代理,因为服务设置有一个服务的最大连接数,超过这个连接数,则后面的连接将会等待,一直到超时,报错!! 2.在已有配置的基础上,利用代码更改终结点,如果重设了 ...

  6. 在ASP.NET Core 1.0中如何发送邮件

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:目前.NET Core 1.0中并没有提供SMTP相关的类库,那么要如何从ASP.NE ...

  7. Ubuntu 安装OpenCV3.0.0

    Ubuntu安装OpenCV3.0.0 为了看看opencv3.0的HDR效果,尝试安装opencv3.0到ubuntu12.04上面,安装了好几次终于成功了. 参考博客: http://www.sa ...

  8. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

  9. 15 个 Android 通用流行框架大全

      1. 缓存 名称 描述 DiskLruCache Java实现基于LRU的磁盘缓存 2.图片加载 名称 描述 Android Universal Image Loader 一个强大的加载,缓存,展 ...

  10. caffe安装(linux)

    从官网github下载caffe-master.zip 解压:unzip caffe-master 将Makefile.config.example复制,命名为Makefile.config(如果是C ...