(图基于Microsoft PaintBrush技术构建)

平面几何是可以难得出蛆的。这道题难在多圆、高度非对称和具有一定复杂性。如图,对ABC,H是垂心,O是垂足,M是中点。QK在ABC外接圆上,均在图中小三角形上构成直角。现需要证明:三角形QHK的外接圆和MOK的的外接圆相切。

如果解析,估计也就做如图的坐标了,到求Q的坐标就可能需要解二元二次方程,K更不知道了。然后,没有然后了。

硬上,然后下去:

容易的点的坐标:
A(0,a)
B (-b,0)
C (c,0)
M ((c-b)/2, 0)
H (0, bc/a)

大圆圆心:( (c-b)/2, (a^2-bc)/2a ),半径:sqrt((a^2+b^2)*(a^2+c^2))/2a

三角形AQH的外接圆圆心:( 0, (a^2+bc)/2a),半径:(a^2-bc)/2a

接下来是关键部分,解析分析上部的直角三角形组,从而求出Q和K的坐标。

可以发现用解析法,会出现多项式爆炸,奈么完结。

于是只有用上述解析中发现的一条平面几何定理(外接圆圆心到边的距离为垂心到对顶点的距离的一半)为突破口,发现这些点之间关联存在以下框架(这个框架非常似曾相识,也许以前看到过或者类似低阶题目):

这其中L为原来三角形ABC的外接圆圆心,G为原图中垂足O,T为MG的中点。显然LKQ、OKQ、LCK、LQA为等腰三角形,形成关于y轴镜面对称结构,O处为原点可建立显然如图的直角坐标系。角OQA,OKC为直角,所以MQ和L向QA作的垂线平行。H和K关于x轴镜面对称。设Q的坐标为(-t, k)(于是显然K为(-t, -k),H为(-t, k)),根据显然的相似关系A的坐标为(a, 0) = (k^2+t^2/t, 0),L的坐标为(0, ka/2t)。

HA的方程易求,HA和y轴的交点坐标为ak/(a+t)。由上述关系,显然TS和y轴的交点为L和HA与y轴交点的中点,即:(k a^2 + 3a k t) / 4 t (a + t)。

LM和AH平行,AH被L对QA垂线平分,显然平分点和HML构成平行四边形,于是容易求出M的坐标为(-(a+t)/2, ka/2t+k/2)。

进一步,TS与GA平行,所以斜率也是-k/(a+t),于是由TS的方程和OS的方程,得到S的坐标为( (a^2+3 a t) / 4(a+2t), k(a^2+3 a t) / 4 t (a+2t) )。

于是最终只要证明,SM = SK。(根据以上算式可证,用数值已经验证几组无误;但wolfram居然不给力,不能正确解出,可能要用自制程序来展开验证)

据说最近IMO中国队失利的一题的更多相关文章

  1. 从首个IMO季军谈起 作者 : 付云皓

    刚刚过去的IMO,中国史无前例地获得了第三名,也是自1997年来近20年首次跌出前二.感谢微信等社交软件,相信现在这个新闻已经以火箭的速度传播了. 作为一个与数学竞赛及IMO打了多年交道的人,我一直有 ...

  2. POJ 2823 UESTCoj 1221 Sliding Window 单调队列 经典入门题

    题意:给出一个序列,求出每连续k个数字中最大的数和最小的数. 这是道单调队列裸题,直接写就行了. 本来用deque写出来后,发现在poj上硬是超时了,在discuss上看很多人也在抱怨超时的问题,据说 ...

  3. 关于ACM,关于CSU

    原文地址:http://tieba.baidu.com/p/2432943599 前言: 即将进入研二,ACM的事情也渐渐远去,记忆终将模糊,但那段奋斗永远让人热血沸腾.开个贴讲讲ACM与中南的故事, ...

  4. JabRef 文献管理软件

    JabRef 文献管理软件简明教程 大多只有使用LaTeX撰写科技论文的研究人员才能完全领略到JabRef的妙不可言,但随着对Word写作平台上BibTeX4Word插件的开发和便利应用,使用Word ...

  5. 洛谷P1717 钓鱼

    P1717 钓鱼 41通过 116提交 题目提供者该用户不存在 标签贪心 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 暂时没有讨论 题目描述 话说发源于小朋友精心设计的游戏被电脑组的童鞋 ...

  6. P4550 收集邮票-洛谷luogu

    传送门 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢 ...

  7. 【HNOI 2018】道路

    Problem Description \(W\) 国的交通呈一棵树的形状.\(W\) 国一共有\(n - 1\)个城市和\(n\)个乡村,其中城市从\(1\)到\(n - 1\) 编号,乡村从\(1 ...

  8. 1605--luogu(深搜dfs)

    据说 这是一道很水的题 emmm 好吧 是我过分水了 ------------------------------------------------------------------------ ...

  9. P1258 小车问题

    P1258 小车问题 蒟蒻精神自强不息蒟蒻精神永不言败加油加油ヾ(◍°∇°◍)ノ゙yeah yeah yeah 据说这是道小学奥数题抱歉蒟蒻的我没学过奥数,算了大概三大张演草纸,不得不说这题对于蒟蒻本 ...

随机推荐

  1. NSDatePicker && NSDate

    UIDatePicker *datePicker = [[UIDatePicker alloc]init]; datePicker.datePickerMode = UIDatePickerModeD ...

  2. Redis笔记(六)Redis的消息通知

    Redis的消息通知可以使用List类型的LPUSH和RPOP(左进右出),当然更方便的是直接使用Redis的Pub/Sub(发布/订阅)模式. >>使用List实现队列 使用列表类型的L ...

  3. Android 注解工具 ButterKnife

    Butter Knife 是 Android 视图字段和方法绑定,使用注解处理来生成样板代码. 主要特性: 在字段使用 @FindView消除findViewById调用 使用 @FindViews在 ...

  4. CSS中设置DIV垂直居中的N种方法 兼容IE浏览器

    在说到这个问题的时候,也许有人会问CSS中不是有vertical-align属性来设置垂直居中的吗?即使是某些浏览器不支持我只需做少许的CSS Hack技术就可以啊!所以在这里我还要啰嗦两句,CSS中 ...

  5. 最终排名 sdut 2446

    最终排名 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 题目链接:http://acm.sdut.edu.cn/sdutoj/p ...

  6. Oracle【IT实验室】数据库备份与恢复之四:RMAN(备份与恢复管理器)

    RMAN是ORACLE提供的一个备份与恢复的工具,可以用来备份和还原数据库文件. 归档日志和控制文件.它也可以用来执行完全或不完全的数据库恢复. RMAN可以由命令行接口或者 OEM的 Backup ...

  7. 重新开始刷dp,哈哈哈

    转载于: http://blog.csdn.net/cc_again?viewmode=list ---------- Accagain 2015年1月29日 从头开始

  8. EF中无法使用时间转字符串

    场景: 查询条件需要使用到时间类型,且需要特殊格式化,例:ToString("yyyy-MM-dd"):即,在需要使用时间进行like方式处理时: 此时,用如下方式: var q ...

  9. 函数fseek() 用法(转)

    在阅读代码时,遇到了很早之前用过的fseek(),很久没有用了,有点陌生,写出来以便下次查阅. 函数功能是把文件指针指向文件的开头,需要包含头文件stdio.h fseek   函数名: fseek ...

  10. c++ 左值 和 右值

    什么是lvalue, 什么是rvalue? lvalue: 具有存储性质的对象,即lvalue对象,是指要实际占用内存空间.有内存地址的那些实体对象,例如:变量(variables).函数.函数指针等 ...