k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系。输入没有标签的新数据之后,将新数据的每个特征和样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签作为新数据的标签。一般来说,我们只选取样本数据中前k个最相似的数据。

Java实现:

KNNData.java

package KNN;

public class KNNData implements Comparable<KNNData>{
double c1;
double c2;
double c3;
double distance;
String type; public KNNData(double c1, double c2, double c3, String type) {
this.c1 = c1;
this.c2 = c2;
this.c3 = c3;
this.type = type;
} @Override
public int compareTo(KNNData arg0) {
return Double.valueOf(this.distance).compareTo(Double.valueOf(arg0.distance));
}
}

KNN.java

package KNN;

import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set; public class KNN { //训练集
private List<KNNData> KNNDS = null; public KNN(List<KNNData> KNNDS) {
this.KNNDS = KNNDS;
} //欧式距离
private static double disCal(KNNData i, KNNData td) {
return Math.sqrt((i.c1 - td.c1)*(i.c1 - td.c1)+(i.c2 - td.c2)*(i.c2 - td.c2)+
(i.c3 - td.c3)*(i.c3 - td.c3));
} private static String getMaxValueKey(int k, List<KNNData> ts){
//只保留前k个元素 while(ts.size() != k) {
ts.remove(k);
} String sKey;
//保存key以及出现次数
HashMap<String,Integer> keySet = new HashMap<String,Integer>();
keySet.put(ts.get(0).type,1);
for (int x = 1; x < ts.size(); x++) {
sKey = ts.get(x).type;
if (keySet.containsKey(sKey)) {
keySet.put(sKey, keySet.get(sKey)+1);
} else {
keySet.put(sKey, 1);
}
}
Set<Map.Entry<String,Integer>> set = keySet.entrySet();
Iterator<Map.Entry<String,Integer>> iter = set.iterator(); int mValue = 0;
String mType = "";
while (iter.hasNext()){
Map.Entry<String,Integer> map = iter.next();
if (mValue < map.getValue()) {
mType = map.getKey();
mValue = map.getValue();
}
} return mType;
} public static String knnCal(int k, KNNData i, List<KNNData> ts) {
//保存距离
for (KNNData td : ts) {
td.distance = disCal(i, td);
}
Collections.sort(ts);
return getMaxValueKey(k, ts);
}
}

KNNTest.java

package KNN;

import java.util.ArrayList;
import java.util.List; public class KNNTest { public static void main(String[] args) { List<KNNData> kd = new ArrayList<KNNData>();
//训练集
kd.add(new KNNData(1.2,1.1,0.1,"A"));
kd.add(new KNNData(1.2,1.1,0.1,"A"));
kd.add(new KNNData(7,1.5,0.1,"B"));
kd.add(new KNNData(6,1.2,0.1,"B"));
kd.add(new KNNData(2,2.6,0.1,"C"));
kd.add(new KNNData(2,2.6,0.1,"C"));
kd.add(new KNNData(2,2.6,0.1,"C"));
kd.add(new KNNData(100,1.1,0.1,"D")); System.out.println(KNN.knnCal(3, new KNNData(1.1,1.1,0.1,"N/A"), kd));
}
}

k近邻算法的Java实现的更多相关文章

  1. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  2. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  3. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  4. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  5. k近邻算法

    k 近邻算法是一种基本分类与回归方法.我现在只是想讨论分类问题中的k近邻法.k近邻算法的输入为实例的特征向量,对应于特征空间的点,输出的为实例的类别.k邻近法假设给定一个训练数据集,其中实例类别已定. ...

  6. KNN K~近邻算法笔记

    K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...

  7. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

  8. 机器学习——KNN算法(k近邻算法)

    一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...

  9. [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...

随机推荐

  1. jquery属性过滤选择器

    http://www.jb51.net/article/46279.htm   $("div[id]").addClass("highlight"); //查找 ...

  2. 使用TCMalloc优化OpenResty

    1.安装依赖包 yum -y install wget gcc gcc-c++ -y 2.安装libunwind库可以从http://ftp.twaren.net/Unix/NonGNU//libun ...

  3. ACM 矩形的个数

    矩形的个数 时间限制:1000 ms  |  内存限制:65535 KB 难度:1   描述 在一个3*2的矩形中,可以找到6个1*1的矩形,4个2*1的矩形3个1*2的矩形,2个2*2的矩形,2个3 ...

  4. objective-c 多线程注意的问题

    1.资源竞争:当每个线程都去访问同一段内存时,会导致所谓i资源竞争问题,这时候可以通过“@synchronized block”将实例变量包围起来,创建一个互斥锁, 这样你就可以确保在互斥锁中的代码一 ...

  5. TYVJ P3407 佳佳的魔法照片 Label:语文很重要 语文很重要 语文很重要

    描述 佳佳的魔法照片(mphoto.pas\c\cpp) [题目背景] 佳佳的魔法照片(Magic Photo):如果你看过<哈利•波特>,你就会知道魔法世界里的照片是很神奇的.也许是因为 ...

  6. 纪念逝去的岁月——C++实现一个栈

    1.代码 2.运行结果 1.代码 stack.cpp #include <stdio.h> #include <string.h> class ClsStack { priva ...

  7. 最详细eclipse汉化插件安装教程

    最详细eclipse汉化插件安装教程(转) 转自:http://blog.csdn.net/dai_zhenliang/article/details/8588576#t4 教程作者:戴振良 本文与& ...

  8. Find a way——L

    L. Find a way Pass a year learning in Hangzhou, yifenfei arrival hometown Ningbo at finally. Leave N ...

  9. Relax NG 在Odoo中的应用

    想必有些同学一定会奇怪,Odoo是如何将模块中的XML中的诸如record.menuitem是如何被组织和定义的,以及各种field的各种属性究竟有哪些,今天,我们就来一探究竟. Relax NG:“ ...

  10. java类加载机制

    使用某个类是发生的事情 加载->链接(验证.准备.解析)->初始化->可以使用 加载:将class文件字节码内容加载到内存当中,并将这些静态数据转换成方法区中的运行时数据结构 在堆中 ...