注:以下p[i]均表示概率

设F(x)为按i次开关后到达终止状态方案数的EGF,显然F(x)=π(ep[i]x/p+(-1)s[i]e-p[i]x/p)/2,然而方案包含一些多次到达合法方案的状态,需将其排除。n次操作回到原状态的方案数的生成函数G(x)=π(ep[i]x/p+e-p[i]x/p)/2。实现时只需要记录F(x)=Σa[i]eix/P中a[i](-P<=i<=P)的系数即可(G(x)也一样),于是暴力复杂度O(nP)。H(x)为答案的生成函数,显然F、G、H所对应的OGF f、g、h满足f(x)=g(x)h(x)。然后就是EGF向OGF的转化:F(x)=Σa[i]eix/P→f(x)=Σa[i]/(1-ix/P),其中-P<=i<=P,于是此时要求h'(1),然后根据除法求导公式,可以计算出h'(x),但x=1时函数不收敛。然后推一下式子就发现本题其实是背包DP了(这里打数学公式太累了就省略一些内容了),复杂度O(nP)

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+,mid=1e5,mod=;
int n,sp,ans,s[N],a[N],f[N],g[N],tmp[N];
int qpow(int a,int b)
{
int ret=;
while(b)
{
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod,b>>=;
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&s[i]);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
f[mid]=g[mid]=;
for(int i=;i<=n;i++)
{
sp+=a[i];
for(int j=-sp;j<=sp;j++)tmp[j+mid]=(g[j-a[i]+mid]+g[j+a[i]+mid])%mod;
memcpy(g,tmp,sizeof g);
for(int j=-sp;j<=sp;j++)tmp[j+mid]=(f[j-a[i]+mid]+(s[i]?mod-f[j+a[i]+mid]:f[j+a[i]+mid]))%mod;
memcpy(f,tmp,sizeof f);
}
for(int i=-sp;i<sp;i++)ans=(ans+1ll*(g[i+mid]-f[i+mid]+mod)*qpow(sp-i,mod-))%mod;
ans=1ll*ans*sp%mod;
printf("%d",ans);
}

[ZJOI2019]开关(生成函数+背包DP)的更多相关文章

  1. HDU-1171 Big Event in HDU(生成函数/背包dp)

    题意 给出物品种类,物品单价,每种物品的数量,尽可能把其分成价值相等的两部分. 思路 背包的思路显然是用一半总价值当作背包容量. 生成函数则是构造形如$1+x^{w[i]}+x^{2*w[i]}+.. ...

  2. [ZJOI2019] 开关 (一种扩展性较高的做法)

    [ZJOI2019] 开关 (一种扩展性较高的做法) 题意: 有n个开关,一开始状态都为关闭.每次随机选出一个开关将其状态改变,选出第i个开关的概率为${ p_i \over \sum_{i=1}^n ...

  3. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  4. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  5. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  7. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  8. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  9. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. 二十六、CI框架之分页

    一.在模型中读取数据库中的表 二.在控制器中添加dividePage函数 三.在View中写入显示代码 四.查看效果,还是挺漂亮的分页效果 不忘初心,如果您认为这篇文章有价值,认同作者的付出,可以微信 ...

  2. String类型不属于八种基本类型

    String不属于8种基本数据类型,String是一个对象.因为对象的默认值是null,所以String的默认值也是null:但它又是一种特殊的对象,有其它对象没有的一些特性. new String( ...

  3. 关于torch.norm函数的笔记

    先看一下它的参数: norm(p='fro', dim=None, keepdim=False, dtype=None) p: the order of norm. 一般来说指定 $p = 1, 2$ ...

  4. Day 11:静态导入、增强for循环、可变参数的自动装箱与拆箱

    jdk1.5新特性-------静态导入 静态导入的作用: 简化书写. 静态导入可以作用一个类的所有静态成员.  静态导入的格式:import static 包名.类名.静态的成员: 静态导入要注意的 ...

  5. (递归)P1192 台阶问题

    题解: 这其实是变相的斐波那契,观察下列等式: //k=2 : 1 2 3 5 8 13 21 34...... //k=3 : 1 2 4 7 13 24 44 81... //k=4 : 1 2 ...

  6. h5-transform-3d

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. Spring 中将service 注入到普通的工具类中

    记录一下,防止忘记. 要求每次生成一个和数据库不重复的组队码,于是就想在工具类中加入service注入 方法1(红框是注意的地方)

  8. Python自学之路---Day13

    目录 Python自学之路---Day13 常用的三个方法 匹配单个字符 边界匹配 数量匹配 逻辑与分组 编译正则表达式 其他方法 Python自学之路---Day13 常用的三个方法 1.re.ma ...

  9. Python时间问题

    获取当前的时间,time只能精确到秒,而datetime可以精确到毫秒,所以使用格式化的时候要注意. nowTime=time.localtime((time.time())) t=time.strf ...

  10. git子模块使用

    如下项目有多个标红的子模块 1.首先进入每个子模块目录,init初始化子模块仓库,然后提交远程. 2.在每个子目录都初始化好仓库后,进入lv-qggz主目录,只初始化该仓库,然后依次添加子模块的仓库地 ...