参考:

https://blog.csdn.net/zwqjoy/article/details/80493341

https://blog.csdn.net/u012735708/article/details/82769711

执行代码:

# Naive LSTM to learn three-char window to one-char mapping
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 3
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
    seq_in = alphabet[i:i + seq_length]
    seq_out = alphabet[i + seq_length]
    dataX.append([char_to_int[char] for char in seq_in])
    dataY.append(char_to_int[seq_out])
    print(seq_in, '->', seq_out)
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), 1, seq_length))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=1, verbose=2)
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
for pattern in dataX:
    x = numpy.reshape(pattern, (1, 1, len(pattern)))
    x = x / float(len(alphabet))
    prediction = model.predict(x, verbose=0)
    index = numpy.argmax(prediction)
    result = int_to_char[index]
    seq_in = [int_to_char[value] for value in pattern]
    print(seq_in, "->", result)

返回信息:

Using TensorFlow backend.
ABC -> D
BCD -> E
CDE -> F
DEF -> G
EFG -> H
FGH -> I
GHI -> J
HIJ -> K
IJK -> L
JKL -> M
KLM -> N
LMN -> O
MNO -> P
NOP -> Q
OPQ -> R
PQR -> S
QRS -> T
RST -> U
STU -> V
TUV -> W
UVW -> X
VWX -> Y
WXY -> Z
WARNING:tensorflow:From D:\ProgramData\Anaconda2\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From D:\ProgramData\Anaconda2\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/500
 - 8s - loss: 3.2651 - acc: 0.0000e+00
Epoch 2/500
 - 0s - loss: 3.2527 - acc: 0.0435
Epoch 3/500
 - 0s - loss: 3.2462 - acc: 0.0435
Epoch 4/500
 - 0s - loss: 3.2402 - acc: 0.0000e+00
Epoch 5/500
 - 0s - loss: 3.2339 - acc: 0.0435
Epoch 6/500
 - 0s - loss: 3.2274 - acc: 0.0435
Epoch 7/500
 - 0s - loss: 3.2209 - acc: 0.0435
Epoch 8/500
 - 0s - loss: 3.2142 - acc: 0.0000e+00
Epoch 9/500
 - 0s - loss: 3.2067 - acc: 0.0435
Epoch 10/500
 - 0s - loss: 3.1993 - acc: 0.0435
Epoch 11/500
 - 0s - loss: 3.1918 - acc: 0.0435
Epoch 12/500
 - 0s - loss: 3.1839 - acc: 0.0000e+00
Epoch 13/500
 - 0s - loss: 3.1756 - acc: 0.0435
Epoch 14/500
 - 0s - loss: 3.1674 - acc: 0.0435
Epoch 15/500
 - 0s - loss: 3.1586 - acc: 0.0000e+00
Epoch 16/500
 - 0s - loss: 3.1498 - acc: 0.0435
Epoch 17/500
 - 0s - loss: 3.1418 - acc: 0.0000e+00
Epoch 18/500
 - 0s - loss: 3.1340 - acc: 0.0000e+00
Epoch 19/500
 - 0s - loss: 3.1245 - acc: 0.0435
Epoch 20/500
 - 0s - loss: 3.1167 - acc: 0.0435
Epoch 21/500
 - 0s - loss: 3.1096 - acc: 0.0435
Epoch 22/500
 - 0s - loss: 3.1018 - acc: 0.0435
Epoch 23/500
 - 0s - loss: 3.0935 - acc: 0.0435
Epoch 24/500
 - 0s - loss: 3.0857 - acc: 0.0435
Epoch 25/500
 - 0s - loss: 3.0788 - acc: 0.0435
Epoch 26/500
 - 0s - loss: 3.0721 - acc: 0.0435
Epoch 27/500
 - 0s - loss: 3.0647 - acc: 0.0435
Epoch 28/500
 - 0s - loss: 3.0584 - acc: 0.0435
Epoch 29/500
 - 0s - loss: 3.0530 - acc: 0.0435
Epoch 30/500
 - 0s - loss: 3.0449 - acc: 0.0435
Epoch 31/500
 - 0s - loss: 3.0398 - acc: 0.0435
Epoch 32/500
 - 0s - loss: 3.0328 - acc: 0.0870
Epoch 33/500
 - 0s - loss: 3.0257 - acc: 0.0870
Epoch 34/500
 - 0s - loss: 3.0200 - acc: 0.0870
Epoch 35/500
 - 0s - loss: 3.0132 - acc: 0.0870
Epoch 36/500
 - 0s - loss: 3.0077 - acc: 0.0870
Epoch 37/500
 - 0s - loss: 2.9992 - acc: 0.0870
Epoch 38/500
 - 0s - loss: 2.9946 - acc: 0.0870
Epoch 39/500
 - 0s - loss: 2.9855 - acc: 0.0870
Epoch 40/500
 - 0s - loss: 2.9790 - acc: 0.0870
Epoch 41/500
 - 0s - loss: 2.9725 - acc: 0.0870
Epoch 42/500
 - 0s - loss: 2.9655 - acc: 0.0870
Epoch 43/500
 - 0s - loss: 2.9576 - acc: 0.0870
Epoch 44/500
 - 0s - loss: 2.9501 - acc: 0.0870
Epoch 45/500
 - 0s - loss: 2.9420 - acc: 0.0870
Epoch 46/500
 - 0s - loss: 2.9353 - acc: 0.0870
Epoch 47/500
 - 0s - loss: 2.9271 - acc: 0.0870
Epoch 48/500
 - 0s - loss: 2.9193 - acc: 0.0870
Epoch 49/500
 - 0s - loss: 2.9104 - acc: 0.0870
Epoch 50/500
 - 0s - loss: 2.9012 - acc: 0.0870
Epoch 51/500
 - 0s - loss: 2.8931 - acc: 0.0870
Epoch 52/500
 - 0s - loss: 2.8841 - acc: 0.0870
Epoch 53/500
 - 0s - loss: 2.8759 - acc: 0.0870
Epoch 54/500
 - 0s - loss: 2.8653 - acc: 0.0870
Epoch 55/500
 - 0s - loss: 2.8574 - acc: 0.0870
Epoch 56/500
 - 0s - loss: 2.8467 - acc: 0.0870
Epoch 57/500
 - 0s - loss: 2.8372 - acc: 0.0870
Epoch 58/500
 - 0s - loss: 2.8272 - acc: 0.0870
Epoch 59/500
 - 0s - loss: 2.8180 - acc: 0.0870
Epoch 60/500
 - 0s - loss: 2.8074 - acc: 0.0870
Epoch 61/500
 - 0s - loss: 2.7979 - acc: 0.0870
Epoch 62/500
 - 0s - loss: 2.7865 - acc: 0.1304
Epoch 63/500
 - 0s - loss: 2.7778 - acc: 0.1304
Epoch 64/500
 - 0s - loss: 2.7675 - acc: 0.1304
Epoch 65/500
 - 0s - loss: 2.7577 - acc: 0.0870
Epoch 66/500
 - 0s - loss: 2.7471 - acc: 0.0870
Epoch 67/500
 - 0s - loss: 2.7384 - acc: 0.0870
Epoch 68/500
 - 0s - loss: 2.7288 - acc: 0.0870
Epoch 69/500
 - 0s - loss: 2.7165 - acc: 0.0870
Epoch 70/500
 - 0s - loss: 2.7084 - acc: 0.0870
Epoch 71/500
 - 0s - loss: 2.6975 - acc: 0.0870
Epoch 72/500
 - 0s - loss: 2.6891 - acc: 0.0870
Epoch 73/500
 - 0s - loss: 2.6801 - acc: 0.0870
Epoch 74/500
 - 0s - loss: 2.6708 - acc: 0.0870
Epoch 75/500
 - 0s - loss: 2.6624 - acc: 0.0870
Epoch 76/500
 - 0s - loss: 2.6537 - acc: 0.0870
Epoch 77/500
 - 0s - loss: 2.6471 - acc: 0.0870
Epoch 78/500
 - 0s - loss: 2.6378 - acc: 0.1304
Epoch 79/500
 - 0s - loss: 2.6304 - acc: 0.1304
Epoch 80/500
 - 0s - loss: 2.6220 - acc: 0.1304
Epoch 81/500
 - 0s - loss: 2.6150 - acc: 0.1304
Epoch 82/500
 - 0s - loss: 2.6070 - acc: 0.1304
Epoch 83/500
 - 0s - loss: 2.6006 - acc: 0.1304
Epoch 84/500
 - 0s - loss: 2.5950 - acc: 0.1304
Epoch 85/500
 - 0s - loss: 2.5855 - acc: 0.0870
Epoch 86/500
 - 0s - loss: 2.5784 - acc: 0.0870
Epoch 87/500
 - 0s - loss: 2.5741 - acc: 0.0870
Epoch 88/500
 - 0s - loss: 2.5655 - acc: 0.1304
Epoch 89/500
 - 0s - loss: 2.5596 - acc: 0.0870
Epoch 90/500
 - 0s - loss: 2.5528 - acc: 0.0870
Epoch 91/500
 - 0s - loss: 2.5470 - acc: 0.1304
Epoch 92/500
 - 0s - loss: 2.5402 - acc: 0.1304
Epoch 93/500
 - 0s - loss: 2.5350 - acc: 0.1304
Epoch 94/500
 - 0s - loss: 2.5291 - acc: 0.1304
Epoch 95/500
 - 0s - loss: 2.5234 - acc: 0.1304
Epoch 96/500
 - 0s - loss: 2.5174 - acc: 0.1304
Epoch 97/500
 - 0s - loss: 2.5107 - acc: 0.1304
Epoch 98/500
 - 0s - loss: 2.5043 - acc: 0.1304
Epoch 99/500
 - 0s - loss: 2.4984 - acc: 0.1304
Epoch 100/500
 - 0s - loss: 2.4939 - acc: 0.1304
Epoch 101/500
 - 0s - loss: 2.4886 - acc: 0.1304
Epoch 102/500
 - 0s - loss: 2.4820 - acc: 0.1304
Epoch 103/500
 - 0s - loss: 2.4761 - acc: 0.1739
Epoch 104/500
 - 0s - loss: 2.4696 - acc: 0.1739
Epoch 105/500
 - 0s - loss: 2.4660 - acc: 0.1304
Epoch 106/500
 - 0s - loss: 2.4610 - acc: 0.1304
Epoch 107/500
 - 0s - loss: 2.4551 - acc: 0.1304
Epoch 108/500
 - 0s - loss: 2.4498 - acc: 0.1304
Epoch 109/500
 - 0s - loss: 2.4431 - acc: 0.1304
Epoch 110/500
 - 0s - loss: 2.4387 - acc: 0.1739
Epoch 111/500
 - 0s - loss: 2.4333 - acc: 0.1304
Epoch 112/500
 - 0s - loss: 2.4270 - acc: 0.1304
Epoch 113/500
 - 0s - loss: 2.4243 - acc: 0.1739
Epoch 114/500
 - 0s - loss: 2.4161 - acc: 0.1304
Epoch 115/500
 - 0s - loss: 2.4130 - acc: 0.1304
Epoch 116/500
 - 0s - loss: 2.4078 - acc: 0.1739
Epoch 117/500
 - 0s - loss: 2.4023 - acc: 0.1739
Epoch 118/500
 - 0s - loss: 2.3974 - acc: 0.1304
Epoch 119/500
 - 0s - loss: 2.3921 - acc: 0.2174
Epoch 120/500
 - 0s - loss: 2.3869 - acc: 0.1304
Epoch 121/500
 - 0s - loss: 2.3831 - acc: 0.1304
Epoch 122/500
 - 0s - loss: 2.3777 - acc: 0.1739
Epoch 123/500
 - 0s - loss: 2.3728 - acc: 0.2174
Epoch 124/500
 - 0s - loss: 2.3682 - acc: 0.1739
Epoch 125/500
 - 0s - loss: 2.3634 - acc: 0.1739
Epoch 126/500
 - 0s - loss: 2.3586 - acc: 0.1739
Epoch 127/500
 - 0s - loss: 2.3532 - acc: 0.1739
Epoch 128/500
 - 0s - loss: 2.3482 - acc: 0.1739
Epoch 129/500
 - 0s - loss: 2.3463 - acc: 0.2174
Epoch 130/500
 - 0s - loss: 2.3414 - acc: 0.2174
Epoch 131/500
 - 0s - loss: 2.3363 - acc: 0.2174
Epoch 132/500
 - 0s - loss: 2.3322 - acc: 0.1739
Epoch 133/500
 - 0s - loss: 2.3270 - acc: 0.2174
Epoch 134/500
 - 0s - loss: 2.3238 - acc: 0.2174
Epoch 135/500
 - 0s - loss: 2.3194 - acc: 0.2174
Epoch 136/500
 - 0s - loss: 2.3152 - acc: 0.2174
Epoch 137/500
 - 0s - loss: 2.3090 - acc: 0.2174
Epoch 138/500
 - 0s - loss: 2.3051 - acc: 0.2174
Epoch 139/500
 - 0s - loss: 2.3028 - acc: 0.2174
Epoch 140/500
 - 0s - loss: 2.2952 - acc: 0.2174
Epoch 141/500
 - 0s - loss: 2.2936 - acc: 0.2174
Epoch 142/500
 - 0s - loss: 2.2890 - acc: 0.1739
Epoch 143/500
 - 0s - loss: 2.2830 - acc: 0.1739
Epoch 144/500
 - 0s - loss: 2.2797 - acc: 0.2174
Epoch 145/500
 - 0s - loss: 2.2757 - acc: 0.2174
Epoch 146/500
 - 0s - loss: 2.2710 - acc: 0.2174
Epoch 147/500
 - 0s - loss: 2.2676 - acc: 0.2174
Epoch 148/500
 - 0s - loss: 2.2635 - acc: 0.1739
Epoch 149/500
 - 0s - loss: 2.2603 - acc: 0.2174
Epoch 150/500
 - 0s - loss: 2.2570 - acc: 0.2174
Epoch 151/500
 - 0s - loss: 2.2524 - acc: 0.2174
Epoch 152/500
 - 0s - loss: 2.2483 - acc: 0.1739
Epoch 153/500
 - 0s - loss: 2.2437 - acc: 0.2174
Epoch 154/500
 - 0s - loss: 2.2409 - acc: 0.2174
Epoch 155/500
 - 0s - loss: 2.2361 - acc: 0.1739
Epoch 156/500
 - 0s - loss: 2.2345 - acc: 0.2174
Epoch 157/500
 - 0s - loss: 2.2296 - acc: 0.2174
Epoch 158/500
 - 0s - loss: 2.2252 - acc: 0.2174
Epoch 159/500
 - 0s - loss: 2.2219 - acc: 0.2174
Epoch 160/500
 - 0s - loss: 2.2190 - acc: 0.2174
Epoch 161/500
 - 0s - loss: 2.2161 - acc: 0.2609
Epoch 162/500
 - 0s - loss: 2.2119 - acc: 0.2609
Epoch 163/500
 - 0s - loss: 2.2065 - acc: 0.2609
Epoch 164/500
 - 0s - loss: 2.2046 - acc: 0.2609
Epoch 165/500
 - 0s - loss: 2.2011 - acc: 0.2609
Epoch 166/500
 - 0s - loss: 2.1987 - acc: 0.3043
Epoch 167/500
 - 0s - loss: 2.1948 - acc: 0.2174
Epoch 168/500
 - 0s - loss: 2.1914 - acc: 0.3043
Epoch 169/500
 - 0s - loss: 2.1882 - acc: 0.2609
Epoch 170/500
 - 0s - loss: 2.1863 - acc: 0.2609
Epoch 171/500
 - 0s - loss: 2.1808 - acc: 0.2174
Epoch 172/500
 - 0s - loss: 2.1779 - acc: 0.3478
Epoch 173/500
 - 0s - loss: 2.1744 - acc: 0.3478
Epoch 174/500
 - 0s - loss: 2.1736 - acc: 0.3478
Epoch 175/500
 - 0s - loss: 2.1686 - acc: 0.3478
Epoch 176/500
 - 0s - loss: 2.1652 - acc: 0.3043
Epoch 177/500
 - 0s - loss: 2.1617 - acc: 0.2609
Epoch 178/500
 - 0s - loss: 2.1613 - acc: 0.2609
Epoch 179/500
 - 0s - loss: 2.1553 - acc: 0.3478
Epoch 180/500
 - 0s - loss: 2.1534 - acc: 0.2609
Epoch 181/500
 - 0s - loss: 2.1511 - acc: 0.2609
Epoch 182/500
 - 0s - loss: 2.1477 - acc: 0.3043
Epoch 183/500
 - 0s - loss: 2.1445 - acc: 0.2609
Epoch 184/500
 - 0s - loss: 2.1416 - acc: 0.3913
Epoch 185/500
 - 0s - loss: 2.1383 - acc: 0.3478
Epoch 186/500
 - 0s - loss: 2.1366 - acc: 0.3478
Epoch 187/500
 - 0s - loss: 2.1328 - acc: 0.3043
Epoch 188/500
 - 0s - loss: 2.1317 - acc: 0.3043
Epoch 189/500
 - 0s - loss: 2.1284 - acc: 0.3478
Epoch 190/500
 - 0s - loss: 2.1242 - acc: 0.3478
Epoch 191/500
 - 0s - loss: 2.1225 - acc: 0.3043
Epoch 192/500
 - 0s - loss: 2.1178 - acc: 0.3043
Epoch 193/500
 - 0s - loss: 2.1171 - acc: 0.2609
Epoch 194/500
 - 0s - loss: 2.1141 - acc: 0.2609
Epoch 195/500
 - 0s - loss: 2.1108 - acc: 0.3043
Epoch 196/500
 - 0s - loss: 2.1100 - acc: 0.3478
Epoch 197/500
 - 0s - loss: 2.1051 - acc: 0.3043
Epoch 198/500
 - 0s - loss: 2.1025 - acc: 0.3478
Epoch 199/500
 - 0s - loss: 2.1005 - acc: 0.3478
Epoch 200/500
 - 0s - loss: 2.0982 - acc: 0.3478
Epoch 201/500
 - 0s - loss: 2.0951 - acc: 0.3478
Epoch 202/500
 - 0s - loss: 2.0926 - acc: 0.3043
Epoch 203/500
 - 0s - loss: 2.0919 - acc: 0.3043
Epoch 204/500
 - 0s - loss: 2.0876 - acc: 0.3478
Epoch 205/500
 - 0s - loss: 2.0844 - acc: 0.3043
Epoch 206/500
 - 0s - loss: 2.0838 - acc: 0.3043
Epoch 207/500
 - 0s - loss: 2.0798 - acc: 0.3043
Epoch 208/500
 - 0s - loss: 2.0777 - acc: 0.3478
Epoch 209/500
 - 0s - loss: 2.0767 - acc: 0.3043
Epoch 210/500
 - 0s - loss: 2.0723 - acc: 0.2609
Epoch 211/500
 - 0s - loss: 2.0716 - acc: 0.3043
Epoch 212/500
 - 0s - loss: 2.0690 - acc: 0.3043
Epoch 213/500
 - 0s - loss: 2.0663 - acc: 0.3478
Epoch 214/500
 - 0s - loss: 2.0632 - acc: 0.3913
Epoch 215/500
 - 0s - loss: 2.0628 - acc: 0.3478
Epoch 216/500
 - 0s - loss: 2.0603 - acc: 0.3478
Epoch 217/500
 - 0s - loss: 2.0567 - acc: 0.3913
Epoch 218/500
 - 0s - loss: 2.0559 - acc: 0.3913
Epoch 219/500
 - 0s - loss: 2.0509 - acc: 0.3913
Epoch 220/500
 - 0s - loss: 2.0499 - acc: 0.3043
Epoch 221/500
 - 0s - loss: 2.0482 - acc: 0.3478
Epoch 222/500
 - 0s - loss: 2.0439 - acc: 0.3478
Epoch 223/500
 - 0s - loss: 2.0427 - acc: 0.3913
Epoch 224/500
 - 0s - loss: 2.0404 - acc: 0.4348
Epoch 225/500
 - 0s - loss: 2.0393 - acc: 0.3913
Epoch 226/500
 - 0s - loss: 2.0379 - acc: 0.4348
Epoch 227/500
 - 0s - loss: 2.0360 - acc: 0.4348
Epoch 228/500
 - 0s - loss: 2.0330 - acc: 0.4348
Epoch 229/500
 - 0s - loss: 2.0307 - acc: 0.4348
Epoch 230/500
 - 0s - loss: 2.0269 - acc: 0.4783
Epoch 231/500
 - 0s - loss: 2.0251 - acc: 0.3913
Epoch 232/500
 - 0s - loss: 2.0234 - acc: 0.4783
Epoch 233/500
 - 0s - loss: 2.0222 - acc: 0.4348
Epoch 234/500
 - 0s - loss: 2.0190 - acc: 0.4783
Epoch 235/500
 - 0s - loss: 2.0175 - acc: 0.5652
Epoch 236/500
 - 0s - loss: 2.0161 - acc: 0.4783
Epoch 237/500
 - 0s - loss: 2.0133 - acc: 0.4348
Epoch 238/500
 - 0s - loss: 2.0097 - acc: 0.4348
Epoch 239/500
 - 0s - loss: 2.0094 - acc: 0.3913
Epoch 240/500
 - 0s - loss: 2.0077 - acc: 0.4783
Epoch 241/500
 - 0s - loss: 2.0048 - acc: 0.4348
Epoch 242/500
 - 0s - loss: 2.0028 - acc: 0.4348
Epoch 243/500
 - 0s - loss: 2.0002 - acc: 0.4348
Epoch 244/500
 - 0s - loss: 1.9974 - acc: 0.4348
Epoch 245/500
 - 0s - loss: 1.9958 - acc: 0.4783
Epoch 246/500
 - 0s - loss: 1.9956 - acc: 0.4348
Epoch 247/500
 - 0s - loss: 1.9929 - acc: 0.4783
Epoch 248/500
 - 0s - loss: 1.9916 - acc: 0.4783
Epoch 249/500
 - 0s - loss: 1.9888 - acc: 0.5652
Epoch 250/500
 - 0s - loss: 1.9895 - acc: 0.5217
Epoch 251/500
 - 0s - loss: 1.9838 - acc: 0.4348
Epoch 252/500
 - 0s - loss: 1.9840 - acc: 0.4348
Epoch 253/500
 - 0s - loss: 1.9814 - acc: 0.5652
Epoch 254/500
 - 0s - loss: 1.9812 - acc: 0.4783
Epoch 255/500
 - 0s - loss: 1.9768 - acc: 0.5217
Epoch 256/500
 - 0s - loss: 1.9759 - acc: 0.4348
Epoch 257/500
 - 0s - loss: 1.9741 - acc: 0.4783
Epoch 258/500
 - 0s - loss: 1.9703 - acc: 0.5652
Epoch 259/500
 - 0s - loss: 1.9713 - acc: 0.4348
Epoch 260/500
 - 0s - loss: 1.9653 - acc: 0.5217
Epoch 261/500
 - 0s - loss: 1.9658 - acc: 0.5217
Epoch 262/500
 - 0s - loss: 1.9624 - acc: 0.5652
Epoch 263/500
 - 0s - loss: 1.9614 - acc: 0.5217
Epoch 264/500
 - 0s - loss: 1.9632 - acc: 0.5217
Epoch 265/500
 - 0s - loss: 1.9588 - acc: 0.5217
Epoch 266/500
 - 0s - loss: 1.9556 - acc: 0.5217
Epoch 267/500
 - 0s - loss: 1.9556 - acc: 0.5217
Epoch 268/500
 - 0s - loss: 1.9511 - acc: 0.5217
Epoch 269/500
 - 0s - loss: 1.9522 - acc: 0.5652
Epoch 270/500
 - 0s - loss: 1.9502 - acc: 0.5652
Epoch 271/500
 - 0s - loss: 1.9494 - acc: 0.5652
Epoch 272/500
 - 0s - loss: 1.9450 - acc: 0.5652
Epoch 273/500
 - 0s - loss: 1.9455 - acc: 0.5217
Epoch 274/500
 - 0s - loss: 1.9446 - acc: 0.3913
Epoch 275/500
 - 0s - loss: 1.9406 - acc: 0.4783
Epoch 276/500
 - 0s - loss: 1.9392 - acc: 0.4783
Epoch 277/500
 - 0s - loss: 1.9353 - acc: 0.5652
Epoch 278/500
 - 0s - loss: 1.9356 - acc: 0.4348
Epoch 279/500
 - 0s - loss: 1.9355 - acc: 0.6087
Epoch 280/500
 - 0s - loss: 1.9345 - acc: 0.5652
Epoch 281/500
 - 0s - loss: 1.9291 - acc: 0.6087
Epoch 282/500
 - 0s - loss: 1.9311 - acc: 0.6087
Epoch 283/500
 - 0s - loss: 1.9298 - acc: 0.4783
Epoch 284/500
 - 0s - loss: 1.9264 - acc: 0.5217
Epoch 285/500
 - 0s - loss: 1.9245 - acc: 0.6087
Epoch 286/500
 - 0s - loss: 1.9233 - acc: 0.5652
Epoch 287/500
 - 0s - loss: 1.9217 - acc: 0.4783
Epoch 288/500
 - 0s - loss: 1.9193 - acc: 0.5217
Epoch 289/500
 - 0s - loss: 1.9149 - acc: 0.5217
Epoch 290/500
 - 0s - loss: 1.9153 - acc: 0.5217
Epoch 291/500
 - 0s - loss: 1.9128 - acc: 0.6087
Epoch 292/500
 - 0s - loss: 1.9112 - acc: 0.6957
Epoch 293/500
 - 0s - loss: 1.9112 - acc: 0.6087
Epoch 294/500
 - 0s - loss: 1.9095 - acc: 0.6087
Epoch 295/500
 - 0s - loss: 1.9077 - acc: 0.5652
Epoch 296/500
 - 0s - loss: 1.9059 - acc: 0.6087
Epoch 297/500
 - 0s - loss: 1.9054 - acc: 0.6522
Epoch 298/500
 - 0s - loss: 1.9045 - acc: 0.6087
Epoch 299/500
 - 0s - loss: 1.9010 - acc: 0.6522
Epoch 300/500
 - 0s - loss: 1.8994 - acc: 0.5217
Epoch 301/500
 - 0s - loss: 1.8975 - acc: 0.4348
Epoch 302/500
 - 0s - loss: 1.8957 - acc: 0.5652
Epoch 303/500
 - 0s - loss: 1.8956 - acc: 0.6087
Epoch 304/500
 - 0s - loss: 1.8962 - acc: 0.4783
Epoch 305/500
 - 0s - loss: 1.8935 - acc: 0.5217
Epoch 306/500
 - 0s - loss: 1.8892 - acc: 0.5652
Epoch 307/500
 - 0s - loss: 1.8881 - acc: 0.6087
Epoch 308/500
 - 0s - loss: 1.8867 - acc: 0.5652
Epoch 309/500
 - 0s - loss: 1.8869 - acc: 0.5652
Epoch 310/500
 - 0s - loss: 1.8837 - acc: 0.6087
Epoch 311/500
 - 0s - loss: 1.8825 - acc: 0.6522
Epoch 312/500
 - 0s - loss: 1.8791 - acc: 0.5217
Epoch 313/500
 - 0s - loss: 1.8790 - acc: 0.6087
Epoch 314/500
 - 0s - loss: 1.8771 - acc: 0.6087
Epoch 315/500
 - 0s - loss: 1.8766 - acc: 0.6087
Epoch 316/500
 - 0s - loss: 1.8746 - acc: 0.5652
Epoch 317/500
 - 0s - loss: 1.8720 - acc: 0.5652
Epoch 318/500
 - 0s - loss: 1.8711 - acc: 0.6087
Epoch 319/500
 - 0s - loss: 1.8699 - acc: 0.5652
Epoch 320/500
 - 0s - loss: 1.8688 - acc: 0.4783
Epoch 321/500
 - 0s - loss: 1.8674 - acc: 0.5652
Epoch 322/500
 - 0s - loss: 1.8677 - acc: 0.5652
Epoch 323/500
 - 0s - loss: 1.8627 - acc: 0.5217
Epoch 324/500
 - 0s - loss: 1.8636 - acc: 0.6087
Epoch 325/500
 - 0s - loss: 1.8623 - acc: 0.6522
Epoch 326/500
 - 0s - loss: 1.8608 - acc: 0.5217
Epoch 327/500
 - 0s - loss: 1.8619 - acc: 0.6522
Epoch 328/500
 - 0s - loss: 1.8582 - acc: 0.6087
Epoch 329/500
 - 0s - loss: 1.8554 - acc: 0.5652
Epoch 330/500
 - 0s - loss: 1.8540 - acc: 0.6522
Epoch 331/500
 - 0s - loss: 1.8567 - acc: 0.5652
Epoch 332/500
 - 0s - loss: 1.8520 - acc: 0.5652
Epoch 333/500
 - 0s - loss: 1.8515 - acc: 0.6522
Epoch 334/500
 - 0s - loss: 1.8484 - acc: 0.6087
Epoch 335/500
 - 0s - loss: 1.8498 - acc: 0.6087
Epoch 336/500
 - 0s - loss: 1.8451 - acc: 0.6522
Epoch 337/500
 - 0s - loss: 1.8434 - acc: 0.6522
Epoch 338/500
 - 0s - loss: 1.8431 - acc: 0.5217
Epoch 339/500
 - 0s - loss: 1.8418 - acc: 0.6087
Epoch 340/500
 - 0s - loss: 1.8410 - acc: 0.5217
Epoch 341/500
 - 0s - loss: 1.8395 - acc: 0.6522
Epoch 342/500
 - 0s - loss: 1.8392 - acc: 0.6087
Epoch 343/500
 - 0s - loss: 1.8362 - acc: 0.5652
Epoch 344/500
 - 0s - loss: 1.8336 - acc: 0.6087
Epoch 345/500
 - 0s - loss: 1.8320 - acc: 0.6087
Epoch 346/500
 - 0s - loss: 1.8316 - acc: 0.6522
Epoch 347/500
 - 0s - loss: 1.8325 - acc: 0.5652
Epoch 348/500
 - 0s - loss: 1.8284 - acc: 0.5652
Epoch 349/500
 - 0s - loss: 1.8278 - acc: 0.6087
Epoch 350/500
 - 0s - loss: 1.8263 - acc: 0.6087
Epoch 351/500
 - 0s - loss: 1.8234 - acc: 0.5217
Epoch 352/500
 - 0s - loss: 1.8244 - acc: 0.6087
Epoch 353/500
 - 0s - loss: 1.8224 - acc: 0.6522
Epoch 354/500
 - 0s - loss: 1.8208 - acc: 0.6522
Epoch 355/500
 - 0s - loss: 1.8225 - acc: 0.6522
Epoch 356/500
 - 0s - loss: 1.8181 - acc: 0.6522
Epoch 357/500
 - 0s - loss: 1.8170 - acc: 0.5217
Epoch 358/500
 - 0s - loss: 1.8182 - acc: 0.6522
Epoch 359/500
 - 0s - loss: 1.8146 - acc: 0.5652
Epoch 360/500
 - 0s - loss: 1.8114 - acc: 0.6957
Epoch 361/500
 - 0s - loss: 1.8111 - acc: 0.7391
Epoch 362/500
 - 0s - loss: 1.8091 - acc: 0.6522
Epoch 363/500
 - 0s - loss: 1.8096 - acc: 0.5652
Epoch 364/500
 - 0s - loss: 1.8078 - acc: 0.6087
Epoch 365/500
 - 0s - loss: 1.8069 - acc: 0.5652
Epoch 366/500
 - 0s - loss: 1.8060 - acc: 0.6522
Epoch 367/500
 - 0s - loss: 1.8041 - acc: 0.6087
Epoch 368/500
 - 0s - loss: 1.8021 - acc: 0.6957
Epoch 369/500
 - 0s - loss: 1.8003 - acc: 0.6957
Epoch 370/500
 - 0s - loss: 1.8004 - acc: 0.6957
Epoch 371/500
 - 0s - loss: 1.7980 - acc: 0.5652
Epoch 372/500
 - 0s - loss: 1.7977 - acc: 0.6522
Epoch 373/500
 - 0s - loss: 1.7946 - acc: 0.6957
Epoch 374/500
 - 0s - loss: 1.7930 - acc: 0.6957
Epoch 375/500
 - 0s - loss: 1.7939 - acc: 0.6957
Epoch 376/500
 - 0s - loss: 1.7907 - acc: 0.6087
Epoch 377/500
 - 0s - loss: 1.7892 - acc: 0.6522
Epoch 378/500
 - 0s - loss: 1.7899 - acc: 0.6087
Epoch 379/500
 - 0s - loss: 1.7861 - acc: 0.6522
Epoch 380/500
 - 0s - loss: 1.7871 - acc: 0.6522
Epoch 381/500
 - 0s - loss: 1.7870 - acc: 0.6087
Epoch 382/500
 - 0s - loss: 1.7850 - acc: 0.7391
Epoch 383/500
 - 0s - loss: 1.7811 - acc: 0.6957
Epoch 384/500
 - 0s - loss: 1.7812 - acc: 0.6522
Epoch 385/500
 - 0s - loss: 1.7824 - acc: 0.7391
Epoch 386/500
 - 0s - loss: 1.7790 - acc: 0.6522
Epoch 387/500
 - 0s - loss: 1.7762 - acc: 0.6957
Epoch 388/500
 - 0s - loss: 1.7761 - acc: 0.7826
Epoch 389/500
 - 0s - loss: 1.7763 - acc: 0.6957
Epoch 390/500
 - 0s - loss: 1.7740 - acc: 0.6957
Epoch 391/500
 - 0s - loss: 1.7719 - acc: 0.6957
Epoch 392/500
 - 0s - loss: 1.7698 - acc: 0.6957
Epoch 393/500
 - 0s - loss: 1.7712 - acc: 0.6522
Epoch 394/500
 - 0s - loss: 1.7673 - acc: 0.6522
Epoch 395/500
 - 0s - loss: 1.7690 - acc: 0.6957
Epoch 396/500
 - 0s - loss: 1.7659 - acc: 0.6522
Epoch 397/500
 - 0s - loss: 1.7666 - acc: 0.6087
Epoch 398/500
 - 0s - loss: 1.7657 - acc: 0.6087
Epoch 399/500
 - 0s - loss: 1.7630 - acc: 0.6957
Epoch 400/500
 - 0s - loss: 1.7623 - acc: 0.6522
Epoch 401/500
 - 0s - loss: 1.7604 - acc: 0.6957
Epoch 402/500
 - 0s - loss: 1.7576 - acc: 0.7391
Epoch 403/500
 - 0s - loss: 1.7580 - acc: 0.6522
Epoch 404/500
 - 0s - loss: 1.7584 - acc: 0.6957
Epoch 405/500
 - 0s - loss: 1.7561 - acc: 0.6522
Epoch 406/500
 - 0s - loss: 1.7555 - acc: 0.6522
Epoch 407/500
 - 0s - loss: 1.7526 - acc: 0.8261
Epoch 408/500
 - 0s - loss: 1.7531 - acc: 0.6957
Epoch 409/500
 - 0s - loss: 1.7507 - acc: 0.6957
Epoch 410/500
 - 0s - loss: 1.7508 - acc: 0.7391
Epoch 411/500
 - 0s - loss: 1.7495 - acc: 0.6957
Epoch 412/500
 - 0s - loss: 1.7495 - acc: 0.7391
Epoch 413/500
 - 0s - loss: 1.7469 - acc: 0.6957
Epoch 414/500
 - 0s - loss: 1.7459 - acc: 0.6522
Epoch 415/500
 - 0s - loss: 1.7434 - acc: 0.6957
Epoch 416/500
 - 0s - loss: 1.7414 - acc: 0.6522
Epoch 417/500
 - 0s - loss: 1.7393 - acc: 0.6957
Epoch 418/500
 - 0s - loss: 1.7383 - acc: 0.6522
Epoch 419/500
 - 0s - loss: 1.7388 - acc: 0.6957
Epoch 420/500
 - 0s - loss: 1.7389 - acc: 0.6087
Epoch 421/500
 - 0s - loss: 1.7379 - acc: 0.6957
Epoch 422/500
 - 0s - loss: 1.7335 - acc: 0.6957
Epoch 423/500
 - 0s - loss: 1.7331 - acc: 0.7391
Epoch 424/500
 - 0s - loss: 1.7339 - acc: 0.6957
Epoch 425/500
 - 0s - loss: 1.7338 - acc: 0.7391
Epoch 426/500
 - 0s - loss: 1.7303 - acc: 0.6957
Epoch 427/500
 - 0s - loss: 1.7278 - acc: 0.7826
Epoch 428/500
 - 0s - loss: 1.7274 - acc: 0.6522
Epoch 429/500
 - 0s - loss: 1.7277 - acc: 0.7391
Epoch 430/500
 - 0s - loss: 1.7264 - acc: 0.6957
Epoch 431/500
 - 0s - loss: 1.7249 - acc: 0.6522
Epoch 432/500
 - 0s - loss: 1.7245 - acc: 0.6522
Epoch 433/500
 - 0s - loss: 1.7202 - acc: 0.7391
Epoch 434/500
 - 0s - loss: 1.7201 - acc: 0.6522
Epoch 435/500
 - 0s - loss: 1.7186 - acc: 0.7391
Epoch 436/500
 - 0s - loss: 1.7177 - acc: 0.8261
Epoch 437/500
 - 0s - loss: 1.7187 - acc: 0.7391
Epoch 438/500
 - 0s - loss: 1.7170 - acc: 0.7391
Epoch 439/500
 - 0s - loss: 1.7148 - acc: 0.7391
Epoch 440/500
 - 0s - loss: 1.7130 - acc: 0.6957
Epoch 441/500
 - 0s - loss: 1.7140 - acc: 0.8261
Epoch 442/500
 - 0s - loss: 1.7124 - acc: 0.7826
Epoch 443/500
 - 0s - loss: 1.7077 - acc: 0.7826
Epoch 444/500
 - 0s - loss: 1.7108 - acc: 0.6957
Epoch 445/500
 - 0s - loss: 1.7080 - acc: 0.7391
Epoch 446/500
 - 0s - loss: 1.7068 - acc: 0.7391
Epoch 447/500
 - 0s - loss: 1.7061 - acc: 0.6522
Epoch 448/500
 - 0s - loss: 1.7056 - acc: 0.6957
Epoch 449/500
 - 0s - loss: 1.7052 - acc: 0.6957
Epoch 450/500
 - 0s - loss: 1.7015 - acc: 0.7391
Epoch 451/500
 - 0s - loss: 1.7008 - acc: 0.7391
Epoch 452/500
 - 0s - loss: 1.6998 - acc: 0.6957
Epoch 453/500
 - 0s - loss: 1.7005 - acc: 0.7391
Epoch 454/500
 - 0s - loss: 1.6990 - acc: 0.7826
Epoch 455/500
 - 0s - loss: 1.6948 - acc: 0.6957
Epoch 456/500
 - 0s - loss: 1.6984 - acc: 0.8261
Epoch 457/500
 - 0s - loss: 1.6917 - acc: 0.7826
Epoch 458/500
 - 0s - loss: 1.6947 - acc: 0.6087
Epoch 459/500
 - 0s - loss: 1.6923 - acc: 0.7826
Epoch 460/500
 - 0s - loss: 1.6934 - acc: 0.7391
Epoch 461/500
 - 0s - loss: 1.6918 - acc: 0.7391
Epoch 462/500
 - 0s - loss: 1.6893 - acc: 0.7391
Epoch 463/500
 - 0s - loss: 1.6865 - acc: 0.6957
Epoch 464/500
 - 0s - loss: 1.6843 - acc: 0.6957
Epoch 465/500
 - 0s - loss: 1.6856 - acc: 0.7391
Epoch 466/500
 - 0s - loss: 1.6861 - acc: 0.7391
Epoch 467/500
 - 0s - loss: 1.6828 - acc: 0.7826
Epoch 468/500
 - 0s - loss: 1.6819 - acc: 0.7826
Epoch 469/500
 - 0s - loss: 1.6800 - acc: 0.8261
Epoch 470/500
 - 0s - loss: 1.6785 - acc: 0.7826
Epoch 471/500
 - 0s - loss: 1.6795 - acc: 0.8261
Epoch 472/500
 - 0s - loss: 1.6761 - acc: 0.7391
Epoch 473/500
 - 0s - loss: 1.6770 - acc: 0.8261
Epoch 474/500
 - 0s - loss: 1.6755 - acc: 0.8261
Epoch 475/500
 - 0s - loss: 1.6722 - acc: 0.7826
Epoch 476/500
 - 0s - loss: 1.6703 - acc: 0.7826
Epoch 477/500
 - 0s - loss: 1.6705 - acc: 0.7391
Epoch 478/500
 - 0s - loss: 1.6700 - acc: 0.7826
Epoch 479/500
 - 0s - loss: 1.6676 - acc: 0.8696
Epoch 480/500
 - 0s - loss: 1.6700 - acc: 0.7826
Epoch 481/500
 - 0s - loss: 1.6695 - acc: 0.7826
Epoch 482/500
 - 0s - loss: 1.6668 - acc: 0.6957
Epoch 483/500
 - 0s - loss: 1.6669 - acc: 0.7391
Epoch 484/500
 - 0s - loss: 1.6657 - acc: 0.6957
Epoch 485/500
 - 0s - loss: 1.6640 - acc: 0.7391
Epoch 486/500
 - 0s - loss: 1.6613 - acc: 0.7391
Epoch 487/500
 - 0s - loss: 1.6623 - acc: 0.7826
Epoch 488/500
 - 0s - loss: 1.6612 - acc: 0.6957
Epoch 489/500
 - 0s - loss: 1.6574 - acc: 0.7391
Epoch 490/500
 - 0s - loss: 1.6580 - acc: 0.7826
Epoch 491/500
 - 0s - loss: 1.6575 - acc: 0.7826
Epoch 492/500
 - 0s - loss: 1.6556 - acc: 0.8261
Epoch 493/500
 - 0s - loss: 1.6568 - acc: 0.7391
Epoch 494/500
 - 0s - loss: 1.6551 - acc: 0.7391
Epoch 495/500
 - 0s - loss: 1.6500 - acc: 0.8261
Epoch 496/500
 - 0s - loss: 1.6521 - acc: 0.7391
Epoch 497/500
 - 0s - loss: 1.6502 - acc: 0.7391
Epoch 498/500
 - 0s - loss: 1.6516 - acc: 0.8261
Epoch 499/500
 - 0s - loss: 1.6491 - acc: 0.7826
Epoch 500/500
 - 0s - loss: 1.6453 - acc: 0.7826
Model Accuracy: 86.96%
['A', 'B', 'C'] -> D
['B', 'C', 'D'] -> E
['C', 'D', 'E'] -> F
['D', 'E', 'F'] -> G
['E', 'F', 'G'] -> H
['F', 'G', 'H'] -> I
['G', 'H', 'I'] -> J
['H', 'I', 'J'] -> K
['I', 'J', 'K'] -> L
['J', 'K', 'L'] -> M
['K', 'L', 'M'] -> N
['L', 'M', 'N'] -> O
['M', 'N', 'O'] -> P
['N', 'O', 'P'] -> Q
['O', 'P', 'Q'] -> R
['P', 'Q', 'R'] -> S
['Q', 'R', 'S'] -> T
['R', 'S', 'T'] -> U
['S', 'T', 'U'] -> V
['T', 'U', 'V'] -> X
['U', 'V', 'W'] -> Z
['V', 'W', 'X'] -> Z
['W', 'X', 'Y'] -> Z

Keras入门——(4)长短期记忆网络LSTM(一)的更多相关文章

  1. 如何预测股票分析--长短期记忆网络(LSTM)

    在上一篇中,我们回顾了先知的方法,但是在这个案例中表现也不是特别突出,今天介绍的是著名的l s t m算法,在时间序列中解决了传统r n n算法梯度消失问题的的它这一次还会有令人杰出的表现吗? 长短期 ...

  2. Keras入门——(7)长短期记忆网络LSTM(四)

    数据准备:http://www.manythings.org/anki/cmn-eng.zip 源代码:https://github.com/pjgao/seq2seq_keras 参考:https: ...

  3. Keras入门——(6)长短期记忆网络LSTM(三)

    参考: https://blog.csdn.net/u012735708/article/details/82769711 https://zybuluo.com/hanbingtao/note/58 ...

  4. Keras入门——(5)长短期记忆网络LSTM(二)

    参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...

  5. 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)

    递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...

  6. 理解长短期记忆网络(LSTM NetWorks)

    转自:http://www.csdn.net/article/2015-11-25/2826323 原文链接:Understanding LSTM Networks(译者/刘翔宇 审校/赵屹华 责编/ ...

  7. LSTM - 长短期记忆网络

    循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...

  8. LSTMs 长短期记忆网络系列

    RNN的长期依赖问题 什么是长期依赖? 长期依赖是指当前系统的状态,可能受很长时间之前系统状态的影响,是RNN中无法解决的一个问题. 如果从(1) “ 这块冰糖味道真?”来预测下一个词,是很容易得出“ ...

  9. Long-Short Memory Network(LSTM长短期记忆网络)

    自剪枝神经网络 Simple RNN从理论上来看,具有全局记忆能力,因为T时刻,递归隐层一定记录着时序为1的状态 但由于Gradient Vanish问题,T时刻向前反向传播的Gradient在T-1 ...

随机推荐

  1. 06-Docker-Image管理操作

    目录 06-Docker-Image管理操作 参考 镜像命名规范 镜像管理命令 1. 拉取推送 2. 查看操作 3. 本地删除 4. 创建标签 5. 导出导入 06-Docker-Image管理操作 ...

  2. ASP.NET Core搭建多层网站架构【14-扩展之部署到IIS】

    2020/02/03, ASP.NET Core 3.1, VS2019, IIS 10, dotnet-hosting-3.1.1-win.exe 摘要:基于ASP.NET Core 3.1 Web ...

  3. C# 集合类型学习

    如果你掌握了一门语言的数据结构 ,那么你离掌握这门语言 也不远了 1.列表 对于list,值得一提的是 Capacity 属性,使用默认的构造函数 ,让我们用代码来说明 var intList = n ...

  4. 【渗透测试】Msf提权步骤

    1.生成反弹木马(脚本,执行程序) msfvenom -p windows/meterpreter/reverse_tcp LHOST=<Your IP Address> LPORT=&l ...

  5. PyQt5控件支持拖拽方法

    让控件支持拖拽动作A.setDragEnable(True) 设置A可以拖动B.setAcceptDrops(True) 设置B可以接受拖动B需要满足两个事件1.dragEnterEvent 将A拖到 ...

  6. 22 严格模式&this关键词&let&const

    严格模式: ECMA5后的新指令:"use strict" 它不算一条语句,而是一段文字表达式,更早版本的JavaScript会忽略它. 严格模式无法使用未声明的变量. 严格模式的 ...

  7. Hibernate学习(二)

    持久化对象的声明周期 1.Hibernate管理的持久化对象(PO persistence object )的生命周期有四种状态,分别是transient.persistent.detached和re ...

  8. 关于永久POE

    1.传统POE 在我们的企业网络中,经常会使用交换机给IP电话或者无线AP供电,以使得其正常的工作. 正常情况下,我们都知道,普通的POE是在PSE交换机启动完成后,然后再给PD(Power Devi ...

  9. 临时解决执行 Composer Install 返回 Killed 的问题

    昨天在 Linux 服务器上部署 PHP 项目时遇到了一个问题,系统为 Centos 7 ,1 核 1G 的配置.通过 Git 拉取代码后,由于是基于 Laravel 框架的项目,所以需要使用 Com ...

  10. c#活动目录操作

    c#活动目录操作  https://www.cnblogs.com/ahuo/archive/2007/03/16/676853.html 添加引用 System.DirectoryServices导 ...