[poj1741 Tree]树上点分治
题意:给一个N个节点的带权树,求长度小于等于K的路径条数
思路:选取一个点作为根root,假设f(root)是当前树的答案,那么答案来源于两部分:
(1)路径不经过root,那么就是完全在子树内,这部分可以递归统计
(2)路径经过root,这部分可以通过容斥原理统计,具体见有关点分治资料。。。
点分治有个特点,当考虑的问题由根这个子树转为儿子的子树时,可以选取任意点作为新的根,只要它在儿子的子树内,这就使得我们可以通过选取特别的点使得树深度更小,这个点就是树的重心(在程序里面是不断找子树的重心),树分治的复杂度是O(NH+TH)的,其中H是树的深度,T是每层计算答案的复杂度,重心可以将树的深度变成O(logN)。
另外,整体看树分治的遍历节点的过程,发现它与建堆的过程十分相似,也就从侧面说明了树分治的复杂度。。。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <map>
#include <vector>
using namespace std;
#define X first
#define Y second
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define all(a) (a).begin(), (a).end()
#define mset(a, x) memset(a, x, sizeof(a))
#define mcpy(a, b) memcpy(a, b, sizeof(b))
#define cas() int T, cas = 0; cin >> T; while (T --)
template<typename T>bool umax(T&a, const T&b){return a<b?(a=b,true):false;}
template<typename T>bool umin(T&a, const T&b){return b<a?(a=b,true):false;}
typedef long long ll;
typedef pair<int, int> pii; #ifndef ONLINE_JUDGE
#include "local.h"
#endif const int N = 1e4 + 7;
const int M = N;
const int inf = 1e9 + 7; namespace Edge {
int last[N], to[M << 1], w[M << 1], next[M << 1], cntE;
void init() {
cntE = 0;
memset(last, -1, sizeof(last));
}
void addEdge(int u, int v, int w) {
to[cntE] = v;
Edge::w[cntE] = w;
next[cntE] = last[u];
last[u] = cntE ++;
}
} int n, K; namespace Center {
int root, siz, son[N];
void init() {
siz = inf;
}
void getRoot(int cur, int fa, int total, bool used[]) {
son[cur] = 0;
int buf = 0;
for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
int to = Edge::to[i];
if (to != fa && !used[to]) {
getRoot(to, cur, total, used);
son[cur] += son[to] + 1;
buf = max(buf, son[to] + 1);
}
}
buf = max(buf, total - son[cur] - 1);
if (buf < siz || buf == siz && cur < siz) {
siz = buf;
root = cur;
}
}
} void getDepth(int cur, int fa, int sum, vector<int> &vt, bool used[]) {
vt.pb(sum);
for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
int to = Edge::to[i], w = Edge::w[i];
if (to != fa && !used[to]) getDepth(to, cur, sum + w, vt, used);
}
} int getAns(vector<int> &vt) {
sort(all(vt));
int maxp = vt.size() - 1, ans = 0;
for (int i = 0; i < maxp; i ++) {
while (i < maxp && vt[i] + vt[maxp] > K) maxp --;
ans += maxp - i;
}
return ans;
} bool used[N]; int work(int cur) {
used[cur] = true;
vector<int> total;
total.push_back(0);
int ans = 0;
for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
int to = Edge::to[i], w = Edge::w[i];
if (!used[to]) {
vector<int> local;
getDepth(to, cur, w, local, used);
ans -= getAns(local);
for (int j = 0; j < local.size(); j ++) {
total.push_back(local[j]);
}
Center::init();
Center::getRoot(to, cur, local.size(), used);
ans += work(Center::root);
}
}
return ans += getAns(total);
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n >> K, n || K) {
int u, v, w;
Edge::init();
Center::init();
mset(used, 0);
for (int i = 1; i < n; i ++) {
scanf("%d%d%d", &u, &v, &w);
Edge::addEdge(u, v, w);
Edge::addEdge(v, u, w);
}
Center::getRoot(1, 0, n, used);
cout << work(Center::root) << endl;
}
return 0;
}
[poj1741 Tree]树上点分治的更多相关文章
- codeforces 161D Distance in Tree 树上点分治
链接:https://codeforces.com/contest/161/problem/D 题意:给一个树,求距离恰好为$k$的点对是多少 题解:对于一个树,距离为$k$的点对要么经过根节点,要么 ...
- POJ1741 tree 【点分治】
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25286 Accepted: 8421 Description ...
- POJ 1741 Tree 树上点分治
题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...
- POJ1741 Tree(树分治——点分治)题解
题意:给一棵树,问你最多能找到几个组合(u,v),使得两点距离不超过k. 思路:点分治,复杂度O(nlogn*logn).看了半天还是有点模糊. 显然,所有满足要求的组合,连接这两个点,他们必然经过他 ...
- [poj1741][tree] (树/点分治)
Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...
- poj1741 Tree(点分治)
题目链接:http://poj.org/problem?id=1741 题意:求树上两点之间距离小于等于k的点对的数量 思路:点分治模板题,推荐一篇讲的非常好的博客:https://blog.csdn ...
- [POJ1741]Tree(点分治模板)
传送门 良心解析 其实以前在求某段序列上的区间统计问题时就碰到过类似于这样的思想. 当时的区间统计问题思路大致是这样: 选取一个点作为中间点,从这个点的左边和右边统计出满足条件的点对.然后当前的中间点 ...
- POJ1741 Tree (点分治)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25772 Accepted: 8566 Description ...
- [POJ1741] Tree【树分治 点分治】
传送门:http://poj.org/problem?id=1741 写的第一道树分治题,撒花纪念~ 对于每一对点对(i, j),它有三种情况: ① 其中一个是根节点.这种情况比较简单,直接加上就好了 ...
随机推荐
- yzmsb_test.py
识别诺诺金服页面的验证码,并自动登录到后台. #导包 from selenium import webdriver from PIL import Image, ImageDraw from time ...
- 终于明白if __name__ == '__main__':了
其实很简单 if __name__ == '__main__': 就是一个判断 __name__是系统变量 __name__有一个特性,在当前文件运行是__main__,调用文件就是调用文件的路径了 ...
- 中间人攻击-Arp之局域网内DNS欺骗
基础知识 网关是啥? 网关是工作在OSI七层模型中的传输层或者应用层,用于高层协议的不同网络之间的连接,网关就好比一个房间通向另一个房间的一扇门. ARP协议 假设A(192.168.1.2)与B(1 ...
- SringMVC入门程序
Spring MVC是Spring Framework的一部分,是基于Java实现MVC的轻量级Web框架 1.Spring优点 轻量级,简单易学 高效 , 基于请求响应的MVC框架 与Spring兼 ...
- Java中Random类
Random:产生随机数的类 构造方法: public Random();没有给种子,用的是默认种子,是当前时间的毫秒值. public Random(long seed);给出指定的种子 //给定种 ...
- 原生Js贪吃蛇游戏实战开发笔记
前言 本课程是通过JavaScript结合WebAPI DOM实现的一版网页游戏---贪吃蛇的开发全过程,采用面向以象的思想设计开发.通过这个小游戏的开发, 不仅可以掌握JS的语法的应用,还可以学会D ...
- pytorch中CUDA类型的转换
import torch import numpy as np device = torch.device("cuda:0" if torch.cuda.is_available( ...
- 线程Event
版本一: from threading import Event,current_thread,Thread import time event=Event() #造一个对象,内部维护一个全局变量,状 ...
- Xshell下载和连接Linux
Xshell下载和连接Linux 第一步.Xshell的下载 方法1:从官网下载个人使用时免费的,商业使用是要收费的. http://www.xshellcn.com/ 方法二2:百度云下载Xshel ...
- Junit借助Groboutils Core进行并发测试
本文参考:http://www.voidcn.com/article/p-ybnvuffh-ke.html:转载请注明出处 junit是无法进行并发测试,但是又有需要并发测试的场景怎么办呢?此时可以借 ...