吴裕雄--天生自然TensorFlow2教程:numpy [ ] 索引
import tensorflow as tf a = tf.ones([1, 5, 5, 3])
a.shape a[0][0]
numpy : 索引 a = tf.random.normal([4, 28, 28, 3])
a.shape a[1].shape a[1, 2].shape
a[1][2][3].shape
a[1, 2, 3, 2].shape
一维切片
a = tf.range(10)
a a[-1:]
a[-2:]
a[:2]
a[:-1]
多维切片
a = tf.random.normal([4, 28, 28, 3])
a.shape a[0].shape a[0, :, :, :].shape a[0, 1, :, :].shape a[:, :, :, 0].shape a[:, :, :, 2].shape a[:, 0, :, :].shape
步长::step
a = tf.random.normal([4, 28, 28, 3])
a.shape a[0:2, :, :, :].shape a[:, 0:28:2, 0:28:2, :].shape a[:, :14, :14, :].shape a[:, 14:, 14:, :].shape a[:, ::2, ::2, :].shape
倒序::-1
a = tf.range(4)
a a[::-1] a[::-2] a[2::-2]
省略号...
a = tf.random.normal([2, 4, 28, 28, 3])
a.shape a[0].shape a[0, :, :, :, :].shape a[0, ...].shape a[:, :, :, :, 0].shape a[..., 0].shape a[0, ..., 2].shape a[1, 0, ..., 0].shape
gather a = tf.random.normal([4, 35, 8])
a.shape tf.gather(a, axis=0, indices=[2, 3]).shape a[2:4].shape tf.gather(a, axis=0, indices=[2, 1, 3, 0]).shape tf.gather(a, axis=1, indices=[2, 3, 7, 9, 16]).shape tf.gather(a, axis=2, indices=[2, 3, 7]).shape aa = tf.gather(a,axis,[several students])
aaa = tf.gather(aa,axis,[several subjects])
gather_nd a = tf.random.normal([4, 35, 8])
a.shape tf.gather_nd(a, [0]).shape # [[0],[],[]] tf.gather_nd(a, [0, 1]).shape tf.gather_nd(a, [0, 1, 2]).shape tf.gather_nd(a, [[0, 1, 2]]).shape tf.gather_nd(a, [[0, 0], [1, 1]]).shape tf.gather_nd(a, [[0, 0], [1, 1], [2, 2]]).shape # 第一个班级第一个学生的第一门课
# 第二个班级第二个学生的第二门课
# 第三个班级第三个学生的第三门课
tf.gather_nd(a, [[0, 0, 0], [1, 1, 1], [2, 2, 2]]).shape tf.gather_nd(a, [[[0, 0, 0], [1, 1, 1], [2, 2, 2]]]).shape
boolean_mask
a = tf.random.normal([4, 28, 28, 3])
a.shape tf.boolean_mask(a, mask=[True, True, False, False]).shape tf.boolean_mask(a, mask=[True, True, False], axis=3).shape a = tf.ones([2, 3, 4])
a.shape # [2,3],还剩下4,三个True,因此是3*4True
tf.boolean_mask(a, mask=[[True, False, False], [False, True, True]]).shape
吴裕雄--天生自然TensorFlow2教程:numpy [ ] 索引的更多相关文章
- 吴裕雄--天生自然TensorFlow2教程:高阶操作
import tensorflow as tf a = tf.random.normal([3, 3]) a mask = a > 0 mask # 为True元素,即>0的元素的索引 i ...
- 吴裕雄--天生自然TensorFlow2教程:张量排序
import tensorflow as tf a = tf.random.shuffle(tf.range(5)) a tf.sort(a, direction='DESCENDING') # 返回 ...
- 吴裕雄--天生自然TensorFlow2教程:创建Tensor
import numpy as np import tensorflow as tf tf.convert_to_tensor(np.ones([2, 3])) tf.convert_to_tenso ...
- 吴裕雄--天生自然TensorFlow2教程:函数优化实战
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...
- 吴裕雄--天生自然TensorFlow2教程:数据统计
import tensorflow as tf a = tf.ones([2, 2]) a tf.norm(a) tf.sqrt(tf.reduce_sum(tf.square(a))) a = tf ...
- 吴裕雄--天生自然TensorFlow2教程:维度变换
图片视图 [b, 28, 28] # 保存b张图片,28行,28列(保存数据一般行优先),图片的数据没有被破坏 [b, 28*28] # 保存b张图片,不考虑图片的行和列,只保存图片的数据,不关注图片 ...
- 吴裕雄--天生自然TensorFlow2教程:Tensor数据类型
list: [1,1.2,'hello'] ,存储图片占用内存非常大 np.array,存成一个静态数组,但是numpy在深度学习之前就出现了,所以不适合深度学习 tf.Tensor,为了弥补nump ...
- 吴裕雄--天生自然TensorFlow2教程:手写数字问题实战
import tensorflow as tf from tensorflow import keras from keras import Sequential,datasets, layers, ...
- 吴裕雄--天生自然TensorFlow2教程:反向传播算法
随机推荐
- 158-PHP strstr函数输出第一次出现字符串的位置到字符串结尾的所有字符串
<?php $str='PHP is a very good programming language!'; //定义一个字符串 echo '第一次出现字母l的位置到字符串结尾的所有字符串'.s ...
- 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:Spring通知类型及使用ProxyFactoryBean创建AOP代理
通知(Advice)其实就是对目标切入点进行增强的内容,Spring AOP 为通知(Advice)提供了 org.aopalliance.aop.Advice 接口. Spring 通知按照在目标类 ...
- Node.js NPM 包(Package)
章节 Node.js NPM 介绍 Node.js NPM 作用 Node.js NPM 包(Package) Node.js NPM 管理包 Node.js NPM Package.json 包是打 ...
- Apache nifi 第二篇(小白初试) nifi数据对接流程初次尝试
一.准备工作 1.官网下载nifi 2.上传到linux随便哪里把,因为nifi是用java写的,所以首先要保证你的linux装了jdk 其次保证系统在装了zookeeper,因为nifi是一个分布 ...
- App_显示图表内容
今天在之前记账本的基础上增加了图标的显示功能,在本次课程中它以折线图为例讲述.但是课程中给出了多有图的代码案例. https://github.com/lecho/hellocharts-androi ...
- 原生js完成打地鼠小游戏
:这是首页,有简单模式和地狱模式两种模式进行选择 这是选择完模式之后的游戏界面:30秒一局游戏倒计时,每打中一只老鼠加一分,没砸中减一分,没砸不加不减 首先准备几张图片 html代码: <!-- ...
- cf 261B.Maxim and Restaurant
什么什么期望的,不会! (题解http://blog.sina.com.cn/s/blog_140e100580102wj4e.html(看不懂)) #include<bits/stdc++.h ...
- cron 表达式0 0/10 * * * 与 0 */10 * * *的区别
0 0/10 * * * 与 0 */10 * * * 的差别在于什么地方.在说这两者的差别之前,先说下各个字符代表的含义.0代表从0分开始,*代表任意字符,/代表递增. 0 0/10 * * *代表 ...
- Python pip换源
前言 哈喽呀,小伙伴们,晚上好呀,今天要给大家带来点什么呐,我们就来说说python的pip换源吧,这个换源,相对来说,还是比较重要的,能少生好几次气的,哈哈哈 为什么要换源 我们搞python的,肯 ...
- Codeforces 1296C - Yet Another Walking Robot
题目大意: 给定一个机器人的行走方式 你需要取走一段区间 但要保证取走这段区间后机器人最终到达的终点位置是不变的 问这段区间最短时是哪一段 解题思路: 易得,如果重复走到了某些已经走过的点,那么肯定就 ...