林轩田机器学习基石笔记2—Learning to Answer Yes/No
机器学习的整个过程:根据模型H,使用演算法A,在训练样本D上进行训练,得到最好的h,其对应的g就是我们最后需要的机器学习的模型函数,一般g接近于目标函数f。本节课将继续深入探讨机器学习问题,介绍感知机Perceptron模型,并推导课程的第一个机器学习算法:Perceptron Learning Algorithm(PLA)。
一、Perceptron Hypothesis Set
某银行要根据用户的年龄、性别、年收入等情况来判断是否给该用户发信用卡。现在有训练样本D,即之前用户的信息和是否发了信用卡。我们要根据D,通过A,在H中选择最好的h,得到g,接近目标函数f。银行用这个模型对以后用户进行判断:发信用卡(+1),不发信用卡(-1)。
在这个机器学习的整个流程中,有一个部分非常重要:就是模型选择,即Hypothesis Set。选择什么样的模型,很大程度上会影响机器学习的效果和表现。下面介绍一个简单常用的Hypothesis Set:感知机(Perceptron)。
我们把用户的个人信息作为特征向量x,令总共有d个特征,每个特征赋予不同的权重w,表示该特征对输出(是否发信用卡)的影响有多大。那所有特征的加权和的值与一个设定的阈值threshold进行比较:大于这个阈值,输出为+1,即发信用卡;小于这个阈值,输出为-1,即不发信用卡。感知机模型,就是当特征加权和与阈值的差大于或等于0,则输出h(x)=1;当特征加权和与阈值的差小于0,则输出h(x)=-1,而我们的目的就是计算出所有权值w和阈值threshold。
为了计算方便,通常我们将阈值threshold当做w0,引入一个x0=1的量与w0相乘,这样就把threshold也转变成了权值w0,简化了计算。h(x)的表达式做如下变换:
我们假设Perceptrons在二维平面上,即h(x)=sign(w0+w1x1+w2x2)。其中,w0+w1x1+w2x2=0是平面上一条分类直线,直线一侧是正类(+1),直线另一侧是负类(-1)。权重w不同,对应于平面上不同的直线。
二、Perceptron Learning Algorithm(PLA)
根据上一部分的介绍,H包含所有可能性的直接(感知器)。接下来,我们的目的就是如何设计一个演算法A,来选择一个最好的直线,能将平面上所有的正类和负类完全分开,也就是找到最好的g,使g≈f。
我们可以使用逐点修正的思想,首先在平面上随意取一条直线,看看哪些点分类错误。然后开始对第一个错误点就行修正,即变换直线的位置,使这个错误点变成分类正确的点。接着,再对第二个、第三个等所有的错误分类点就行直线纠正,直到所有的点都完全分类正确了,就得到了最好的直线。这种“逐步修正”,就是PLA思想所在。
遇到个错误点就进行修正,不断迭代。要注意一点:每次修正直线,可能使之前分类正确的点变成错误点,这是可能发生的。但是没关系,不断迭代,不断修正,最终会将所有点完全正确分类(PLA前提是线性可分的)。这种做法的思想是“知错能改”,有句话形容它:“A fault confessed is half redressed.”
实际操作中,可以一个点一个点地遍历,发现分类错误的点就进行修正,直到所有点全部分类正确。这种被称为Cyclic PLA。
下面用图解的形式来介绍PLA的修正过程:
对PLA,有以下两个问题:
- PLA迭代一定会停下来吗?如果线性不可分怎么办?
PLA停下来的时候,是否能保证f\approx gf≈g?如果没有停下来,是否有f\approx gf≈g?
三、Guarantee of PLA(可先不看)
根据PLA的定义,当找到一条直线,能将所有平面上的点都分类正确,那么PLA就停止了。要达到这个终止条件,就必须保证D是线性可分(linear separable)。如果是非线性可分的,那么,PLA就不会停止。
对于线性可分的情况,如果有这样一条直线,能够将正类和负类完全分开,令这时候的目标权重为wf,则对每个点,必然满足yn=sign(wfTxn),即对任一点:
PLA会对每次错误的点进行修正,更新权重wt+1的值,如果wt+1与wf越来越接近,数学运算上就是内积越大,那表示wt+1是在接近目标权重wf,证明PLA是有学习效果的。所以,我们来计算wt+1与wf的内积:
从推导可以看出,wt+1与wf的内积跟wt与wf的内积相比更大了。似乎说明了wt+1更接近wf,但是内积更大,可能是向量长度更大了,不一定是向量间角度更小。所以,下一步,我们还需要证明wt+1与wt向量长度的关系:
下面贴出来该结论的具体推导过程:
四、Non-Separable Data
上一部分,我们证明了线性可分的情况下,PLA是可以停下来并正确分类的,但对于非线性可分的情况,wf实际上并不存在,那么之前的推导并不成立,PLA不一定会停下来。所以,PLA虽然实现简单,但也有缺点:
对于非线性可分的情况,我们可以把它当成是数据集D中掺杂了一下noise,事实上,大多数情况下我们遇到的D,都或多或少地掺杂了noise。这时,机器学习流程是这样的:
在非线性情况下,我们可以把条件放松,即不苛求每个点都分类正确,而是容忍有错误点,取错误点的个数最少时的权重w:
事实证明,上面的解是NP-hard问题,难以求解。然而,我们可以对在线性可分类型中表现很好的PLA做个修改,把它应用到非线性可分类型中,获得近似最好的g。
修改后的PLA称为Packet Algorithm。它的算法流程与PLA基本类似。其原理是:在PLA的基础上,若进行一次调整后发现新的线更好,则抛弃原来线,存储更好线。
如何判断数据集D是不是线性可分?对于二维数据来说,通常还是通过肉眼观察来判断的。一般情况下,Pocket Algorithm要比PLA速度慢一些。
五、总结
本节课主要介绍了线性感知机模型,以及解决这类感知机分类问题的简单算法:PLA。我们详细证明了对于线性可分问题,PLA可以停下来并实现完全正确分类。对于不是线性可分的问题,可以使用PLA的修正算法Pocket Algorithm来解决。
林轩田机器学习基石笔记2—Learning to Answer Yes/No的更多相关文章
- 林轩田机器学习基石笔记3—Types of Learning
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要 ...
- 林轩田机器学习基石笔记4—Feasibility of Learning
上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Lear ...
- 林轩田机器学习基石笔记1—The Learning Problem
机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Lear ...
- (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...
- 机器学习基石(台湾大学 林轩田),Lecture 2: Learning to Answer Yes/No
上一节我们跟大家介绍了一个具体的机器学习的问题,以及它的内容的设定,我们今天要继续下去做什么呢?我们今天要教大家说到底我们怎么样可以有一个机器学习的演算法来解决我们上一次提到的,判断银行要不要给顾客信 ...
- 【Perceptron Learning Algorithm】林轩田机器学习基石
直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:fea ...
- 【Feasibility of Learning】林轩田机器学习基石
这一节的核心内容在于如何由hoeffding不等式 关联到机器学习的可行性. 这个PAC很形象又准确,描述了“当前的可能性大概是正确的”,即某个概率的上届. hoeffding在机器学习上的关联就是: ...
- 林轩田机器学习基石课程学习笔记5 — Training versus Testing
上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...
- 【Linear Regression】林轩田机器学习基石
这一节开始讲基础的Linear Regression算法. (1)Linear Regression的假设空间变成了实数域 (2)Linear Regression的目标是找到使得残差更小的分割线(超 ...
随机推荐
- nginx安装https证书
安装证书 文件说明:1. 证书文件xxxxx.pem,包含两段内容,请不要删除任何一段内容.2. 如果是证书系统创建的CSR,还包含:证书私钥文件xxxx.key. ( 1 ) 在Nginx的安装目录 ...
- java 环境变量配置搭建(1)
基础常识,classPath配置,朱姐,跨平台性,world组成部分
- Springboot数据校验
SpringBoot中使用了Hibernate-validate校验框架 1.在实体类中添加校验规则 校验规则: @NotBlank: 判断字符串是否为null或者是空串(去掉首尾空格).@NotEm ...
- C++对象数组与对象指针
(一)对象数组 将具有相同类类型的对象有序地集合在一起便构成了对象数组,以一维对象数组为例,其定义形式为: 类名 对象数组名[]; Point points[100]; 关于对象数组的几点说明: (1 ...
- [代码审计]PCWAP
为什么想要审计这套源码呐?之前看到某大佬在做反钓鱼网站的时候,发现钓鱼网站的后台用的就是PCWAP,所以我觉得有必要审计一下,顺便记录,打击网络犯罪! 0x00 PCAWAP: PCWAP手机网站建站 ...
- springboot+mybatis+通用mapper+多数据源(转载)
1.数据库准备 数据库表我们在springboot-mybatis数据之外,新建数据库springboot-mybatis2: springboot-mybatis数据库中有t_class表: spr ...
- python如何在一个for循环中遍历多个列表
推荐使用python内置函数zip,它可以将x个y维列表变成一个zip对象,将zip对象拆包可以发现它变成了y个x维元组.我们还可以将这个对象变成一个元组或列表.如下所示: 如果是两个列表的zip,我 ...
- python获取当前时间戳
import time # 获取当前时间戳print(int(time.time()))
- springBoot中mybatis错误之 Property 'configuration' and 'configLocation' can not specified with together 解决
mybatis.config-location与mybatis.config-locations不同 mybatis.config-location不加载全局配置文件
- 0x10 - PostgreSQL 安装之 CentOS7 + Patroni
PostgreSQL + CentOS7 + Patroni 背景 PostgreSQL 的高可用环境 环境 CentOS 7 pg01 (192.168.1.120) pg02 (192.168.1 ...