【GAN】GAN设计与训练集锦
以下内容纯属经验之谈,无公式推断!部分内容源自其他博客或课程,并已标注来源。
问题篇[1]
1.模式崩溃
在某个模式(mode)下出现大量重复样本,如左图中,生成的样本分布靠得很近,较聚集,可视化如右图,表现为生成多个相同或相似度很高的样本,缺乏多样性。

2.模式丢失
顾名思义,某些模式(mode)没有,同样缺乏多样性,虽然生成的样本已经尽可能拟合真实分布,分布也不聚集,但是存在某些模式的丢失,例如下图中人物,除了肤色变化,人物没有任何变化。

3.难以收敛
训练阶段,生成损失和判别损失一致不下降,难以收敛。
设计篇
1.在上采样阶段,慎用transpose2d,推荐使用upsample + conv2d组合,如下图所以,利用transpose2d上采样得到的生成图像,存在“方形格子”,生成的图像不平滑。

(a)输入图像 (b)transpose2d上采样生成图像
2.一些博客提到输入网络前将图像缩放到(-1,1),最后一次添加Tanh()激活层将输出映射到(-1,1),在保存结果和可视化时需要(image+1)/2缩放到(0,1).【2】
3. 采样cycleGAN类似结构可以学到图像的解耦的表示,可用于表情编辑、图像风格迁移等(异父异母的三胞胎:CycleGAN, DiscoGAN, DualGAN[3])。

4.[4]中提到的(1)利用推土机距离替代JS散度;(2)TTUR:低速(小学习率)更新生成器,高速更新判别器;(3)梯度惩罚;(4)谱归一化;(5)单侧标签平滑等
训练篇
1.当生成器损失从很大的值迅速变为0,而判别器损失维持不变。
有可能时生成器生成能力较弱,因此一种可行的方法是增加生成器的层数来增加非线性。
2.某些文献采用生成器与判别器交叉训练的方法,即先训练判别器,再训练生成器,其目的是先训练判别器并更新其参数,先让其具有较好判别能力,而在训练生成器时因为判别器已具有一定判定能力,生成器的目的是尽可能骗过判别器,所以生成器会朝着生成更真实的图像前进;也可以采用先训练生成器,再训练判别器,但是此种训练方法不推荐;同时也可以采用先更新生成器或判别器多次,再更新另一个一次的方法。
参考
[1] 李宏毅GAN开放课程
[2]GAN训练心得
[3] 异父异母的三胞胎:CycleGAN, DiscoGAN, DualGAN
https://zhuanlan.zhihu.com/p/26332365
[4] GAN性能不稳?这九大技术可“镇住”四类缺陷
【GAN】GAN设计与训练集锦的更多相关文章
- tflearn kears GAN官方demo代码——本质上GAN是先训练判别模型让你能够识别噪声,然后生成模型基于噪声生成数据,目标是让判别模型出错。GAN的过程就是训练这个生成模型参数!!!
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 ...
- GAN︱GAN 在 NLP 中的尝试、困境、经验
GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响,但是这么好的理论是否可以成功地被应用到自然语言处理(NLP)任务呢? Ian Goodfellow 博士 一年前,网友 ...
- DGA GAN——GAN在安全中的应用
DGA的模型:https://github.com/Yuren-Zhong/DeepDGA CNN.LSTM.双向LSTM 论文可以看https://openreview.net/pdf?id=BJL ...
- 你的GAN训练得如何--GAN 的召回率(多样性)和精确率(图像质量)方法评估
生成对抗网络(GAN)是当今最流行的图像生成方法之一,但评估和比较 GAN 产生的图像却极具挑战性.之前许多针对 GAN 合成图像的研究都只用了主观视觉评估,一些定量标准直到最近才开始出现.本文认为现 ...
- GAN实战笔记——第五章训练与普遍挑战:为成功而GAN
训练与普遍挑战:为成功而GAN 一.评估 回顾一下第1章中伪造达・芬奇画作的类比.假设一个伪造者(生成器)正在试图模仿达・芬奇,想使这幅伪造的画被展览接收.伪造者要与艺术评论家(判别器)竞争,后者试图 ...
- (转)能根据文字生成图片的 GAN,深度学习领域的又一新星
本文转自:https://mp.weixin.qq.com/s?__biz=MzIwMTgwNjgyOQ==&mid=2247484846&idx=1&sn=c2333a998 ...
- (转) GAN论文整理
本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263 ...
- 原始的生成对抗网络GAN
论文地址:https://arxiv.org/pdf/1406.2661.pdf 1.简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像, ...
- Wasserstein GAN最新进展:从weight clipping到gradient penalty,更加先进的Lipschitz限制手法
前段时间,Wasserstein GAN以其精巧的理论分析.简单至极的算法实现.出色的实验效果,在GAN研究圈内掀起了一阵热潮(对WGAN不熟悉的读者,可以参考我之前写的介绍文章:令人拍案叫绝的Was ...
随机推荐
- MySQL Linux 环境安装
1.卸载 MySQL #查看 Linux 中是否有 mysql rpm -aq |grep -i mysql #有的话通过下面命令卸载删除 rpm -ev mysql-libs-**** --node ...
- dos命令下安装pip报错 不是内部命令
在dos命令下: pip install requests 遇到这种情况一般是Python的环境变量没有设置好 解决方案一:设置环境变量 C:\Python\scripts 如图 是否有pytho ...
- 【摘抄】深入解析Windows操作系统
一.线程是一个进程内部的实体,也是Windows执行此进程时的调度实体.若没有线程,进程的程序将不可能运行.线程包含以下部件: 1.一组代表处理器状态的CPU寄存器中的内容. 2.两个栈:一个用于线程 ...
- 学习笔记之pip的基本使用
粗略学习了pip的基础知识,便将此作为学习笔记记录下来同样希望分享的能帮到大家! 如果自己电脑没有pip,小澈在此分享如何安装,解决办法很多呢 1.使用easy_install安装: 各种进入到eas ...
- dp cf 20190613
A. Boredom 这个题目不难,但是我做的还比较复杂,不过还是很开心,至少做出来了,开始因为爆int了还wa了一发,搞得我以为自己做错了 #include <cstdio> #incl ...
- H - Fire CodeForces - 864E 01背包
https://codeforces.com/problemset/problem/864/E 这个题目要把这个按照物品毁灭时间进行排序,如果时间短就要排在前面,这个是因为要保证之后的物品的拯救不会影 ...
- Kali:系统安装之后进行所需配置
apt设置源 由于官网的源需要墙或者想使用国内的源,可以修改source.list vi /etc/source.list 打开文件并修改为其他可用的源地址,以下可供参考 deb http://ftp ...
- ubuntu安装java方法
详情请点链接:https://www.digitalocean.com/community/tutorials/how-to-install-java-with-apt-get-on-ubuntu-1 ...
- spring-boot如何去获取前端传递的参数
本文主要讨论spring-boot如何获取前端传过来的参数,这些参数主要有两大类,一类是URL里的参数,一个是请求body里的参数 url里的参数 通过url里传过来的参数一般有三种方式,下面我们来看 ...
- go 数组 字符串 切片
数组 数组定义方式 var a [3]int // 定义长度为3的int型数组, 元素全部为0 var b = [...]int{1, 2, 3} // 定义长度为3的int型数组, 元素为 1, 2 ...