(递归)P1036 选数
#include<stdio.h>
#include<math.h>
int x[20],n,k,i;
//判断是否质数
int isprime(int n){
for(i=2;i<=sqrt(n);i++){
if(n%i==0)return 0;
}
return 1;
}
*******************************************************************
//重点
//choose_left_num为剩余的k,already_sum为前面累加的和,start和end为全组合剩下数字的选取范围;调用递归生成全组合,在过程中逐渐把K个数相加,当选取的数个数为0时,直接返回前面的累加和是否为质数即可
//每次选数的时候,我要知道选数范围、累加之和以及剩余次数
int rule(int choose_left_num,int already_sum,int start,int end){ //自己做时就没有考虑递归传入选区范围
if(choose_left_num==0)return isprime(already_sum);
int sum=0; //有几个素数
for(i=start;i<=end;i++){ //没有加够k个数时,就会因i>end而结束循环
sum+=rule(choose_left_num-1,already_sum+x[i],i+1,end);
}
return sum;
}
/*自己写的(错误)
int p(int n,int c){
int s=0;
if(c==1){
return a[n];
}
for(;n<2;n++){
s+=a[n]+p(n+1,c-1);
}
return s;
}
*/
*****************************************************************
int main(){
scanf("%d %d",&n,&k);
for(i =0;i<n;i++)scanf("%d",&x[i]);
printf("%d",rule(k,0,0,n-1));//调用递归解决问题
}
(递归)P1036 选数的更多相关文章
- luogu P1036 选数 x
P1036 选数 题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别 ...
- 【搜索】【入门】洛谷P1036 选数
题目描述 已知 n个整数x1,x2,…,xn,以及1个整数k(k<n).从nn个整数中任选kk个整数相加,可分别得到一系列的和. 例如当n=4,k=3,4个整数分别为3,7,12,19时, ...
- p1036 选数(不详细勿看,递归)
题目:传送门 这题,不会做,而且看了好久才看懂题解的,然后在题解的基础上补了一个 if(start>end) return 0 感觉这样对于我更直观 转载自:大神博客的传送门,点击进入 先声明, ...
- 洛谷P1036 选数 题解 简单搜索/简单状态压缩枚举
题目链接:https://www.luogu.com.cn/problem/P1036 题目描述 已知 \(n\) 个整数 \(x_1,x_2,-,x_n\) ,以及 \(1\) 个整数 \(k(k& ...
- P1036 选数 题解
题目链接https://www.luogu.org/problemnew/show/P1036 题目描述 已知 nnn 个整数 x1,x2,-,xnx_1,x_2,-,x_nx1,x2,-,xn ...
- 洛谷 P1036 选数
嗯.... 这种类型的题在新手村出现还是比较正常的, 但是不知道为什么它的分类竟然是过程函数与递归!!!(难道这不是一个深搜题吗??? 好吧这就是一道深搜题,所以千万别被误导... 先看一下题目: 题 ...
- P1036 选数(DFS)
题目 https://www.luogu.org/problemnew/show/P1036 思路 搜索,使用递归实现dfs,所有数字遍历一遍,当取遍所有数组的index(扫了一遍,并非一定是选取了) ...
- 洛谷P1036选数(素数+组合数)
题目链接:https://www.luogu.org/problemnew/show/P1036 主要考两个知识点:判断一个数是否为素数.从n个数中选出m个数的组合 判断一个数是否为素数: 素数一定是 ...
- 洛古P1036 选数 题解
[我是传送门] 这是一道很经典的深搜与回溯(难度一般) 可是就这个"普及-" 让本蒟蒻做了一晚上+半个上午(实际我不会深搜回溯,全靠框架+去重); 下面让我分享下本蒟蒻的(全排列+ ...
随机推荐
- Idea--使用Idea调试设置
参考 https://blog.csdn.net/yyjava/article/details/81453748 关闭一些Idea默认设置,否则懵逼到爆炸.. 1.关闭集合类视图 2.关闭watch视 ...
- Maven项目工程目录
maven工程目录规范: src/main/java 存放项目的.java文件 src/main/resources 存放项目的资源文件,如spring.hibernate配置文件 src/t ...
- 2018年Android面试题含答案--适合中高级(下)(转)
这里是我整理出来的 面试题,答案我花了很久的时间.加上我自己的理解整理出来的,作者不易,请谅解.有答案的的:https://xiaozhuanlan.com/topic/6132940875 1. ...
- SQL Server 语法大全
SQL语句参考,包含Access.MySQL 以及 SQL Server 基础 创建数据库 CREATE DATABASE database-name 删除数据库 drop database dbna ...
- mock的使用及取消,node模仿本地请求:为了解决前后端分离,用户后台没写完接口的情况下
借鉴:https://www.jianshu.com/p/dd23a6547114 1.说到这里还有一种是配置node模拟本地请求 (1)node模拟本地请求: 补充一下 [1]首先在根目录下建一个d ...
- js对象等号赋值的bug
var a = {n: 1}; var b = a; a.x = a = {n: 2}; console.log(a.x); console.log(b.x); 有道题是这样的,觉得很奇葩,分析一下 ...
- tornado反向解析
tornado反向解析 在路由中添加name属性,并且不能使用元组路由,应当由tornado.web.url定义路由. app = tornado.web.Application([ (r'/', I ...
- hibernate注解 笔记
1.hibernate使用@where实现条件过滤功能 其里面只有一个参数clause,完整用法是: @Where(clause = "VALID_FLAG=1") 可以加在实体类 ...
- 进度5_家庭记账本App_数据库的添加和查看
今天继续在昨天的基础上完成了家庭记账单的在数据库中的添加和查看功能 在之前的基础上舍弃了Fragment,重新在百度上找到了学习资料,并且自我完成了实践 首先在之前的基础上创建CostListAdap ...
- 洛谷 P2543 [AHOI2004]奇怪的字符串
题目传送门 解题思路: 本题朴素求最长公共子序列即可,但是空间不够,怎么办呢? 空间不够,滚动数组来救 AC代码: #include<iostream> #include<cstdi ...