hdu2665可持久化线段树,求区间第K大
Kth number
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12984 Accepted Submission(s): 3962
For each test case, the first line contain two integer n and m (n, m <= 100000), indicates the number of integers in the sequence and the number of the quaere.
The second line contains n integers, describe the sequence.
Each of following m lines contains three integers s, t, k.
[s, t] indicates the interval and k indicates the kth big number in interval [s, t]
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=; int T[N],num[N],san[N];
int ls[N*],rs[N*],sum[N*];
int tot,n,m;
void Update(int last,int p,int l,int r,int &rt){
rt=++tot;
ls[rt]=ls[last];
rs[rt]=rs[last];
sum[rt]=sum[last]+;
if(l==r) return;
int m=(l+r)>>;
if(p<=m) Update(ls[last],p,l,m,ls[rt]);
else Update(rs[last],p,m+,r,rs[rt]);
}
int Query(int ss,int tt,int l,int r,int k){
if(l==r) return l;
int m=(l+r)>>;
int cnt=sum[ls[tt]]-sum[ls[ss]];
if(k<=cnt) return Query(ls[ss],ls[tt],l,m,k);
else return Query(rs[ss],rs[tt],m+,r,k-cnt);
}
void work(){
int l,r,k;
for(int i=;i<=n;++i) {
scanf("%d",num+i);
san[i]=num[i];
}
tot=;
sort(san+,san+n+);
int cnt=unique(san+,san+n+)-san-;for(int i=;i<=n;++i)
num[i]=lower_bound(san+,san+cnt+,num[i])-san;
for(int i=;i<=n;++i) Update(T[i-],num[i],,cnt,T[i]);
while(m--) {
scanf("%d%d%d",&l,&r,&k);
int id=Query(T[l-],T[r],,cnt,k);
printf("%d\n",san[id]);
}
}
int main(){
int T;
for(scanf("%d",&T);T--;){
scanf("%d%d",&n,&m);
work();
}
}
hdu2665可持久化线段树,求区间第K大的更多相关文章
- [hdu2665]Kth number(划分树求区间第k大)
解题关键:划分树模板题. #include<cstdio> #include<cstring> #include<algorithm> #include<cs ...
- 主席树(可持久化线段树) 静态第k大
可持久化数据结构介绍 可持久化数据结构是保存数据结构修改的每一个历史版本,新版本与旧版本相比,修改了某个区域,但是大多数的区域是没有改变的, 所以可以将新版本相对于旧版本未修改的区域指向旧版本的该区域 ...
- HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)
题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小 找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和 区间中位数可以使用划分树,然后在其中记录:每层 ...
- K-th Number 线段树的区间第K大
http://poj.org/problem?id=2104 由于这题的时间限制不紧,所以用线段树水一水. 每个节点保存的是一个数组. 就是对应区间排好序的数组. 建树的时间复杂度需要nlogn 然后 ...
- [poj2104]kth-number(归并树求区间第k大)
复杂度:$O(nlog^3n)$ #include<cstdio> #include<cstring> #include<algorithm> #include&l ...
- 2016年湖南省第十二届大学生计算机程序设计竞赛---Parenthesis(线段树求区间最值)
原题链接 http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1809 Description Bobo has a balanced parenthes ...
- xdoj-1324 (区间离散化-线段树求区间最值)
思想 : 1 优化:题意是覆盖点,将区间看成 (l,r)转化为( l-1,r) 覆盖区间 2 核心:dp[i] 覆盖从1到i区间的最小花费 dp[a[i].r]=min (dp[k])+a[i]s; ...
- hdu 1754 I Hate It (线段树求区间最值)
HDU1754 I Hate It Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u D ...
- [csu/coj 1080]划分树求区间前k大数和
题意:从某个区间内最多选择k个数,使得和最大 思路:首先题目给定的数有负数,如果区间前k大出现负数,那么负数不选和更大,于是对于所有最优选择,负数不会出现,所以用0取代负数,问题便转化为区间的前k大数 ...
- 线段树维护区间前k小
线段树维护区间前k小 $ solution: $ 觉得超级钢琴太麻烦?在这里线段树提供一条龙服务 . 咳咳,开始讲正题!这道题我们有一个和超级钢琴复杂度一样 $ ~O(~\sum x\times lo ...
随机推荐
- java stream中Collectors的用法
目录 简介 Collectors.toList() Collectors.toSet() Collectors.toCollection() Collectors.toMap() Collectors ...
- MAC攻击及缺陷
MAC攻击及缺陷 MAC有好几种实现方式 对MAC的攻击 重放攻击 重放攻击的防护 密钥推测攻击 MAC算法的缺陷 第三方证明 防止否认 前面我们在讲HMAC的时候简单讲过了什么是MAC消息认证码. ...
- layui模块化加载Echarts图表v4.2.1
layui.use(['jquery','echarts'], function () { var $ = layui.$; //记得这是dom对象不是JQ对象,需要转换 echarts = layu ...
- 图论--最短路--dijkstra(含路径输出)模板
#include<iostream> #include<stack> #include<queue> #include<cstring> #includ ...
- 从0开始搭建精灵宝可梦的检测APP
从0开始搭建精灵宝可梦的检测APP 本文为本人原创,转载请注明来源链接 环境要求 Tensorflow1.12.0 cuda 9.0 python3.6.10 Android Studio Anaco ...
- Android 10 获取已连接上的蓝牙设备的当前电量
前言 最近的项目中有获取连接蓝牙设备电量的需求,查找了一些资料,发现谷歌在Android8.0推出了一个getBatteryLevel的api,用来获取蓝牙设备电量百分比的方法,但在我的项目中andr ...
- C. Yet Another Counting Problem(循环节规律)
\(给出a,b,l,r,求在区间[l,r]内有多少x满足x%a%b!=x%b%a\) \(--------------------分割!!~----------------------------\) ...
- springboot配置静态资源访问路径
其实在springboot中静态资源的映射文件是在resources目录下的static文件夹,springboot推荐我们将静态资源放在static文件夹下,因为默认配置就是classpath:/s ...
- [js进阶1]-数据类型
基本数据类型 js 总的有7中数据类型,包括基本类型和引用类型 基本类型 6 种 number boolean string null undefiend symbol 前5种类型统称为原始类型 sy ...
- 【FPGA篇章一】FPGA工作原理:详细介绍FPGA实现编程逻辑的机理
欢迎大家关注我的微信公众账号,支持程序媛写出更多优秀的文章 FPGA(Field Programmable Gate Array),即现场可编程逻辑门阵列,它是作为专用集成电路(ASIC)领域中一种半 ...