E - No Pain No Game 线段树 离线处理 区间排序
E - No Pain No Game
HDU - 4630 这个题目很好,以后可以再写写。
这个题目就是线段树的离线写法,推荐一个博客:https://blog.csdn.net/u010033217/article/details/38156507
这个题目因为数据太大,所以如果直接每一个查询都直接查肯定会T的,所以就要用到线段树。
我直接说思路吧,
第一步,预处理所有可能的数据,就是把每一个数的因子全部求出来,用一个数组存下来。这里就要用到调和级数,用n*logn的复杂度预处理出1~n的所有数的约数。
第二步,输入数据,对于要查询的数据用结构体处理,然后对于结构体的右端点进行排序,从小到大。//这个是为了第三步,第四步
第三步,对于给定的数列进行处理,每次处理一个数,如果这个数的因子前面出现过,那么就更新这个数前面这个位置的最大的gcd,然后再更新这个数字出现的新位置。
//这个是关键,更新这个新位置是必要的,这个可以自己想明白吧。为什么是更新前面的位置呢?因为更新前面的位置之后,第四步就判断到目前位置的最大值就可以直接判断了,还不懂可以看第四步解析。
第四步,每次处理完一个数,都要判断查询里面是不是存在这个。
//因为本来应该是区间更新,现在可以用单点更新代替,这个是因为排序之后的r会越来越大,所以你只要更新区间的左端点就可以了,左端点被包含了,右端点肯定被包含进去了。
最后一步输出答案。
询问【L,R,max_gcd(x,y)】,区间内任意两个值的最大gcd。这样的话,如果每来一个查询我就处理的话那就很难降低复杂度,是采用离线处理的思想,我们首先将所有的查询全部读入,然后将查询按右端点排序(为什么按照右端点排序呢,前往下看)。 要求区间内任意两个点的gcd的最大值,对于这个问题,如果不做一些预处理,我们是不能有效的进行操作的,因为这个问题不是像区间极值哪些问题具有合并性的。所以我们要考虑gcd的特征,两个数的gcd一定是这两个数的因子,这样的话我们就能处理出每个数的因子,通过判断这两个数是否有公因子来更新答案(公因子比之前维护的ans大)。那么我们现在可以捋一捋所知信息:对于一个区间,我们能否通过某种方法查看这个区间内各个数字的因子,然后判断出最大的公因子即为所求。那么假设现在i位置的数字为a[i],那么如果a[i]具有因子x,如果某个位置a[j]也具有因子x,那么区间[i,j]至少拥有这样的gcd为x,如果x大于当前的ans,那么我们就可以更新答案了。 根据上述信息,我们维护一颗线段树,线段树维护的值是区间内最大的gcd。首先我们预处理所有数字的因子,然后我们将排序过后的区间从左到右依次处理(为了加强理解,设定k<i<j),每扫描一个值a[i],我们查看a[i]的所有因子,对于某一个因子x,如果之前有某个值a[k]也存在这样的因子x,那么就可以更新区间[k,i](这个非常关键),然后这个x也可能会更新后面的某个区间[i,j](假设a[j]包含因子x)。接着我们考虑数组pre[x]代表x这个因子上一次(最近一次)出现的位置(即某个数值包含因子x),如果没有出现过就标记为-,如果之前处理了所有的pre[x],那么我们枚举每个数值的因子,就可以根据pre数组判断能否更新区间[pre[x], now_postion],那么对于查询[l , r]只要它在[pre[x], now_postion]中,那么就可以更新线段树的值。那么对于按右端点排序好的查询,如果在不断update的过程中遇到了查询的右端点,那么我们就可以做查询即可。
———————————————— https://blog.csdn.net/u010033217/article/details/38156507
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 5e4 + ; int a[maxn], pre[maxn], n, m;
int ans[maxn];
vector<int>vec[maxn]; struct node
{
int l, r, id;
int Max;
}tree[maxn*];
node in[maxn]; void init()
{
for(int i=;i<maxn;i++)
{
for(int j=i;j<maxn;j+=i)
{
vec[j].push_back(i);
}
}
} bool cmp(node a,node b)
{
if (a.r == b.r) return a.l < b.l;
return a.r < b.r;
} void build(int id,int l,int r)
{
tree[id].l = l;
tree[id].r = r;
tree[id].Max = ;
if (l == r) return;
int mid = (l + r) >> ;
build(id << , l, mid);
build(id << | , mid + , r);
} void push_up(int id)
{
tree[id].Max = max(tree[id << ].Max, tree[id << | ].Max);
} void update(int pos,int val,int id)
{
tree[id].Max = max(tree[id].Max, val);
if(tree[id].l==tree[id].r)
{
tree[id].Max = max(tree[id].Max, val);
return;
}
int mid = (tree[id].l + tree[id].r) >> ;
if (pos <= mid) update(pos, val, id << );
else update(pos, val, id << | );
} int query(int l,int r,int id)
{
if(l<=tree[id].l&&r>=tree[id].r)
{
return tree[id].Max;
}
int ans = ;
int mid = (tree[id].l + tree[id].r) >> ;
if (l <= mid) ans = max(ans, query(l, r, id << ));
if (r > mid) ans = max(ans, query(l, r, id << | ));
return ans;
} int main()
{
int t;
init();
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
build(, , n);
scanf("%d", &m);
for(int i=;i<=m;i++)
{
scanf("%d%d", &in[i].l, &in[i].r);
in[i].id = i;
}
memset(pre, -, sizeof(pre));
sort(in + , in + + m, cmp);
for(int i=,j=;i<=n&&j<=m;i++)
{
for(int k=;k<vec[a[i]].size();k++)
{
int tmp = vec[a[i]][k];
if(pre[tmp]!=-)
{
update(pre[tmp], tmp, );
}
pre[tmp] = i;
}
while(in[j].r==i&&j<=m)
{ if(in[j].l==in[j].r)
{
ans[in[j].id] = ;
j++;
continue;
}
ans[in[j].id] = query(in[j].l, in[j].r, );
j++;
}
}
for(int i=;i<=m;i++)
{
printf("%d\n", ans[i]);
}
}
return ;
}
E - No Pain No Game 线段树 离线处理 区间排序的更多相关文章
- J - Super Mario HDU - 4417 线段树 离线处理 区间排序
J - Super Mario HDU - 4417 这个题目我开始直接暴力,然后就超时了,不知道该怎么做,直接看了题解,这个习惯其实不太好. 不过网上的思路真的很厉害,看完之后有点伤心,感觉自己应该 ...
- HDU - 4630 No Pain No Game (线段树 + 离线处理)
id=45786" style="color:blue; text-decoration:none">HDU - 4630 id=45786" style ...
- HDU 4630 No Pain No Game (线段树+离线)
题目大意:给你一个无序的1~n的排列a,每次询问[l,r]之间任取两个数得到的最大gcd是多少 先对所有询问离线,然后把问题挂在区间的左端点上(右端点也行) 在预处理完质数,再处理一个next数组,表 ...
- hdu 4630 No Pain No Game 线段树离线处理
题目链接 求出一个区间内任意两个数的gcd的最大值. 先将询问读进来然后按r值排序. 将每一个数因数分解, 对每一个因子x, 如果pre[x]!=-1, 那么就更新update(pre[x], x, ...
- 线段树+离线 hdu5654 xiaoxin and his watermelon candy
传送门:点击打开链接 题意:一个三元组假设满足j=i+1,k=j+1,ai<=aj<=ak,那么就好的.如今告诉你序列.然后Q次询问.每次询问一个区间[l,r],问区间里有多少个三元组满足 ...
- 牛客练习赛53 E-老瞎眼pk小鲜肉(思维+线段树+离线)
前言 听说是线段树离线查询?? 做题做着做着慢慢对离线操作有点感觉了,不过也还没参透,等再做些题目再来讨论离线.在线操作. 这题赛后看代码发现有人用的树状数组,$tql$.当然能用树状数组写的线段树也 ...
- HDU 1754 I Hate It(线段树单点替换+区间最值)
I Hate It [题目链接]I Hate It [题目类型]线段树单点替换+区间最值 &题意: 本题目包含多组测试,请处理到文件结束. 在每个测试的第一行,有两个正整数 N 和 M ( 0 ...
- HDU 3577Fast Arrangement(线段树模板之区间增减更新 区间求和查询)
Fast Arrangement Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- POJ 3468 A Simple Problem with Integers(线段树模板之区间增减更新 区间求和查询)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 140120 ...
随机推荐
- MAC 系统java开发环境搭建教程
1.在安装JDK之前,先查看下自己电脑是否已经安装了JDK. 打开终端,输入java -version并回车. 从上图中可以看出我们已安装了,JDK 8.如果这个版本是你需要的版本,可直接看4 ...
- loadrunner post请求
注意:loadrunner参数中的引号,需要自己加"\" post 请求,分为header 和body两个部分处理 header部分比较容易处理,使用函数实现,如web_add_h ...
- Closest Common Ancestors POJ 1470
Language: Default Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissio ...
- 词向量模型word2vector详解
目录 前言 1.背景知识 1.1.词向量 1.2.one-hot模型 1.3.word2vec模型 1.3.1.单个单词到单个单词的例子 1.3.2.单个单词到单个单词的推导 2.CBOW模型 3.s ...
- mysql 创建表 索引 主键 引擎 自增 注释 编码等
CREATE TABLE text(id INT(20) COMMENT '主键',NAME VARCHAR(20) COMMENT '姓名',PASSWORD VARCHAR(20) COMMENT ...
- Java读源码之CountDownLatch
前言 相信大家都挺熟悉 CountDownLatch 的,顾名思义就是一个栅栏,其主要作用是多线程环境下,让多个线程在栅栏门口等待,所有线程到齐后,栅栏打开程序继续执行. 案例 用一个最简单的案例引出 ...
- mysql 使用记录
修改 mysql 数据库密码 mysqladmin -u username -h host_name password -P <port> "new_password" ...
- 尝试用Vue.js开发网页小游戏的过程
准备 首先去官方下载并安装VSCODE,下载地址 https://code.visualstudio.com/.安装后打开会发现是英文版的,需要去安装插件来汉化.具体是在扩展插件搜索chinese,选 ...
- Redis开发运维的陷阱及避坑指南
原文首发于博客园,作者:后青春期的Keats:地址:https://www.cnblogs.com/keatsCoder/ 转载请注明,谢谢! Linux 配置优化 我们在使用 Redis 过程中,可 ...
- 在c++中引用c头文件里的函数
在c++中有的时候想要引用c头文件里的函数有两种方法;就拿c语言里面的<stdlib.h>举例 在c中我们想要用<stdlib.h>里的函数,形式为:#include<s ...