E - No Pain No Game

 HDU - 4630

这个题目很好,以后可以再写写。
这个题目就是线段树的离线写法,推荐一个博客:https://blog.csdn.net/u010033217/article/details/38156507
这个题目因为数据太大,所以如果直接每一个查询都直接查肯定会T的,所以就要用到线段树。
我直接说思路吧,
第一步,预处理所有可能的数据,就是把每一个数的因子全部求出来,用一个数组存下来。这里就要用到调和级数,用n*logn的复杂度预处理出1~n的所有数的约数。
第二步,输入数据,对于要查询的数据用结构体处理,然后对于结构体的右端点进行排序,从小到大。//这个是为了第三步,第四步
第三步,对于给定的数列进行处理,每次处理一个数,如果这个数的因子前面出现过,那么就更新这个数前面这个位置的最大的gcd,然后再更新这个数字出现的新位置。
//这个是关键,更新这个新位置是必要的,这个可以自己想明白吧。为什么是更新前面的位置呢?因为更新前面的位置之后,第四步就判断到目前位置的最大值就可以直接判断了,还不懂可以看第四步解析。
第四步,每次处理完一个数,都要判断查询里面是不是存在这个。
//因为本来应该是区间更新,现在可以用单点更新代替,这个是因为排序之后的r会越来越大,所以你只要更新区间的左端点就可以了,左端点被包含了,右端点肯定被包含进去了。
最后一步输出答案。
 询问【L,R,max_gcd(x,y)】,区间内任意两个值的最大gcd。这样的话,如果每来一个查询我就处理的话那就很难降低复杂度,是采用离线处理的思想,我们首先将所有的查询全部读入,然后将查询按右端点排序(为什么按照右端点排序呢,前往下看)。   

      要求区间内任意两个点的gcd的最大值,对于这个问题,如果不做一些预处理,我们是不能有效的进行操作的,因为这个问题不是像区间极值哪些问题具有合并性的。所以我们要考虑gcd的特征,两个数的gcd一定是这两个数的因子,这样的话我们就能处理出每个数的因子,通过判断这两个数是否有公因子来更新答案(公因子比之前维护的ans大)。那么我们现在可以捋一捋所知信息:对于一个区间,我们能否通过某种方法查看这个区间内各个数字的因子,然后判断出最大的公因子即为所求。那么假设现在i位置的数字为a[i],那么如果a[i]具有因子x,如果某个位置a[j]也具有因子x,那么区间[i,j]至少拥有这样的gcd为x,如果x大于当前的ans,那么我们就可以更新答案了。    

      根据上述信息,我们维护一颗线段树,线段树维护的值是区间内最大的gcd。首先我们预处理所有数字的因子,然后我们将排序过后的区间从左到右依次处理(为了加强理解,设定k<i<j),每扫描一个值a[i],我们查看a[i]的所有因子,对于某一个因子x,如果之前有某个值a[k]也存在这样的因子x,那么就可以更新区间[k,i](这个非常关键),然后这个x也可能会更新后面的某个区间[i,j](假设a[j]包含因子x)。接着我们考虑数组pre[x]代表x这个因子上一次(最近一次)出现的位置(即某个数值包含因子x),如果没有出现过就标记为-,如果之前处理了所有的pre[x],那么我们枚举每个数值的因子,就可以根据pre数组判断能否更新区间[pre[x], now_postion],那么对于查询[l , r]只要它在[pre[x], now_postion]中,那么就可以更新线段树的值。那么对于按右端点排序好的查询,如果在不断update的过程中遇到了查询的右端点,那么我们就可以做查询即可。
———————————————— https://blog.csdn.net/u010033217/article/details/38156507

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 5e4 + ; int a[maxn], pre[maxn], n, m;
int ans[maxn];
vector<int>vec[maxn]; struct node
{
int l, r, id;
int Max;
}tree[maxn*];
node in[maxn]; void init()
{
for(int i=;i<maxn;i++)
{
for(int j=i;j<maxn;j+=i)
{
vec[j].push_back(i);
}
}
} bool cmp(node a,node b)
{
if (a.r == b.r) return a.l < b.l;
return a.r < b.r;
} void build(int id,int l,int r)
{
tree[id].l = l;
tree[id].r = r;
tree[id].Max = ;
if (l == r) return;
int mid = (l + r) >> ;
build(id << , l, mid);
build(id << | , mid + , r);
} void push_up(int id)
{
tree[id].Max = max(tree[id << ].Max, tree[id << | ].Max);
} void update(int pos,int val,int id)
{
tree[id].Max = max(tree[id].Max, val);
if(tree[id].l==tree[id].r)
{
tree[id].Max = max(tree[id].Max, val);
return;
}
int mid = (tree[id].l + tree[id].r) >> ;
if (pos <= mid) update(pos, val, id << );
else update(pos, val, id << | );
} int query(int l,int r,int id)
{
if(l<=tree[id].l&&r>=tree[id].r)
{
return tree[id].Max;
}
int ans = ;
int mid = (tree[id].l + tree[id].r) >> ;
if (l <= mid) ans = max(ans, query(l, r, id << ));
if (r > mid) ans = max(ans, query(l, r, id << | ));
return ans;
} int main()
{
int t;
init();
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
build(, , n);
scanf("%d", &m);
for(int i=;i<=m;i++)
{
scanf("%d%d", &in[i].l, &in[i].r);
in[i].id = i;
}
memset(pre, -, sizeof(pre));
sort(in + , in + + m, cmp);
for(int i=,j=;i<=n&&j<=m;i++)
{
for(int k=;k<vec[a[i]].size();k++)
{
int tmp = vec[a[i]][k];
if(pre[tmp]!=-)
{
update(pre[tmp], tmp, );
}
pre[tmp] = i;
}
while(in[j].r==i&&j<=m)
{ if(in[j].l==in[j].r)
{
ans[in[j].id] = ;
j++;
continue;
}
ans[in[j].id] = query(in[j].l, in[j].r, );
j++;
}
}
for(int i=;i<=m;i++)
{
printf("%d\n", ans[i]);
}
}
return ;
}

E - No Pain No Game 线段树 离线处理 区间排序的更多相关文章

  1. J - Super Mario HDU - 4417 线段树 离线处理 区间排序

    J - Super Mario HDU - 4417 这个题目我开始直接暴力,然后就超时了,不知道该怎么做,直接看了题解,这个习惯其实不太好. 不过网上的思路真的很厉害,看完之后有点伤心,感觉自己应该 ...

  2. HDU - 4630 No Pain No Game (线段树 + 离线处理)

    id=45786" style="color:blue; text-decoration:none">HDU - 4630 id=45786" style ...

  3. HDU 4630 No Pain No Game (线段树+离线)

    题目大意:给你一个无序的1~n的排列a,每次询问[l,r]之间任取两个数得到的最大gcd是多少 先对所有询问离线,然后把问题挂在区间的左端点上(右端点也行) 在预处理完质数,再处理一个next数组,表 ...

  4. hdu 4630 No Pain No Game 线段树离线处理

    题目链接 求出一个区间内任意两个数的gcd的最大值. 先将询问读进来然后按r值排序. 将每一个数因数分解, 对每一个因子x, 如果pre[x]!=-1, 那么就更新update(pre[x], x, ...

  5. 线段树+离线 hdu5654 xiaoxin and his watermelon candy

    传送门:点击打开链接 题意:一个三元组假设满足j=i+1,k=j+1,ai<=aj<=ak,那么就好的.如今告诉你序列.然后Q次询问.每次询问一个区间[l,r],问区间里有多少个三元组满足 ...

  6. 牛客练习赛53 E-老瞎眼pk小鲜肉(思维+线段树+离线)

    前言 听说是线段树离线查询?? 做题做着做着慢慢对离线操作有点感觉了,不过也还没参透,等再做些题目再来讨论离线.在线操作. 这题赛后看代码发现有人用的树状数组,$tql$.当然能用树状数组写的线段树也 ...

  7. HDU 1754 I Hate It(线段树单点替换+区间最值)

    I Hate It [题目链接]I Hate It [题目类型]线段树单点替换+区间最值 &题意: 本题目包含多组测试,请处理到文件结束. 在每个测试的第一行,有两个正整数 N 和 M ( 0 ...

  8. HDU 3577Fast Arrangement(线段树模板之区间增减更新 区间求和查询)

    Fast Arrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. POJ 3468 A Simple Problem with Integers(线段树模板之区间增减更新 区间求和查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 140120 ...

随机推荐

  1. MAC 系统java开发环境搭建教程

    1.在安装JDK之前,先查看下自己电脑是否已经安装了JDK. 打开终端,输入java -version并回车.     从上图中可以看出我们已安装了,JDK 8.如果这个版本是你需要的版本,可直接看4 ...

  2. loadrunner post请求

    注意:loadrunner参数中的引号,需要自己加"\" post 请求,分为header 和body两个部分处理 header部分比较容易处理,使用函数实现,如web_add_h ...

  3. Closest Common Ancestors POJ 1470

    Language: Default Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissio ...

  4. 词向量模型word2vector详解

    目录 前言 1.背景知识 1.1.词向量 1.2.one-hot模型 1.3.word2vec模型 1.3.1.单个单词到单个单词的例子 1.3.2.单个单词到单个单词的推导 2.CBOW模型 3.s ...

  5. mysql 创建表 索引 主键 引擎 自增 注释 编码等

    CREATE TABLE text(id INT(20) COMMENT '主键',NAME VARCHAR(20) COMMENT '姓名',PASSWORD VARCHAR(20) COMMENT ...

  6. Java读源码之CountDownLatch

    前言 相信大家都挺熟悉 CountDownLatch 的,顾名思义就是一个栅栏,其主要作用是多线程环境下,让多个线程在栅栏门口等待,所有线程到齐后,栅栏打开程序继续执行. 案例 用一个最简单的案例引出 ...

  7. mysql 使用记录

    修改 mysql 数据库密码 mysqladmin -u username -h host_name password -P <port> "new_password" ...

  8. 尝试用Vue.js开发网页小游戏的过程

    准备 首先去官方下载并安装VSCODE,下载地址 https://code.visualstudio.com/.安装后打开会发现是英文版的,需要去安装插件来汉化.具体是在扩展插件搜索chinese,选 ...

  9. Redis开发运维的陷阱及避坑指南

    原文首发于博客园,作者:后青春期的Keats:地址:https://www.cnblogs.com/keatsCoder/ 转载请注明,谢谢! Linux 配置优化 我们在使用 Redis 过程中,可 ...

  10. 在c++中引用c头文件里的函数

    在c++中有的时候想要引用c头文件里的函数有两种方法;就拿c语言里面的<stdlib.h>举例 在c中我们想要用<stdlib.h>里的函数,形式为:#include<s ...