CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)
ACM思维题训练集合
To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractions are represented as two sets of integers. The product of numbers from the first set gives the fraction numerator, the product of numbers from the second set gives the fraction denominator. However, it turned out that the programs that work with fractions in this representations aren’t complete, they lack supporting the operation of reducing fractions. Implement this operation and the Empire won’t forget you.
Input
The first input line contains two space-separated integers n, m (1 ≤ n, m ≤ 105) that show how many numbers the first set (the numerator) and the second set (the denominator) contain, correspondingly.
The second line contains n space-separated integers: a1, a2, …, an (1 ≤ ai ≤ 107) — the numbers that are multiplied to produce the numerator.
The third line contains m space-separated integers: b1, b2, …, bm (1 ≤ bi ≤ 107) — the numbers that are multiplied to produce the denominator.
Output
Print the answer to the problem in the form, similar to the form of the input data. The number of values in the sets you print nout, mout must satisfy the inequality 1 ≤ nout, mout ≤ 105, and the actual values in the sets aout, i and bout, i must satisfy the inequality 1 ≤ aout, i, bout, i ≤ 107.
Separate the values in the lines by spaces. The printed fraction must be reduced, that is, there mustn’t be such integer x (x > 1), that the numerator and the denominator of the printed fraction are divisible by x. If there are several matching answers, print any of them.
Examples
Input
3 2
100 5 2
50 10
Output
2 3
2 1
1 1 1
Input
4 3
2 5 10 20
100 1 3
Output
1 1
20
3
Note
In the first test sample the numerator equals 1000, the denominator equals 500. If we reduce fraction 1000/500 by the greatest common divisor of the numerator and the denominator (by 500), we obtain fraction 2/1.
In the second test sample the numerator equals 2000, the denominator equals 300. If we reduce fraction 2000/300 by the greatest common divisor of the numerator and the denominator (by 100), we obtain fraction 20/3.
日常WA一天
不看跑的数据,我都不知道自己怎么错的,老天爷。我的输出超出了限制100001不能超过100000,我觉得那时候,那些没有过的,一定是这个原因,出题人真是丧心病狂。
第一个代码是错的,第二个是修改了的,换了方式。
#include <bits/stdc++.h>
using namespace std;
template <typename t>
void read(t &x)
{
char ch = getchar();
x = 0;
int f = 1;
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
x *f;
}
bitset<100000010> v;
int prime[6000001];
int m = 0;
void primes(int n)
{
for (int i = 2; i * i <= n; i++)
{
if (!v[i])
{
for (int j = i * i; j <= n; j += i)
v[j] = 1;
}
}
for (int i = 2; i <= n; i++)
if (!v[i])
prime[m++] = i;
}
vector<int> a[4];
unordered_map<int, int> c, d;
int main()
{
int n, m, maxi = 0;
read(n), read(m);
primes(10000005);
for (int i = 0; i < n; i++)
{
int tem;
read(tem);
maxi = max(maxi, tem);
c[tem]++;
}
for (int i = 0; i < m; i++)
{
int tem;
read(tem);
maxi = max(maxi, tem);
d[tem]++;
}
//cout << 1 << endl;
for (int i = 0; prime[i] <= maxi; i++)
{
// cout<<i<<endl;
int cnt = 0, ans = 0, cnt2 = 0;
int flag = 1;
for (auto po = c.begin(); po != c.end();)
{
// cout<<1<<endl;
pair<int, int> tem = *po;
cnt = 0;
if (tem.first < prime[i])
{
po++;
continue;
}
else
{
flag = 0;
while (tem.first % prime[i] == 0)
{
tem.first /= prime[i];
cnt++;
//cout<<i<<endl;
}
cnt *= tem.second;
auto pi = po;
po++;
c.erase(pi);
if (tem.first != 1)
c[tem.first] += tem.second;
}
ans += cnt;
}
cnt2 = ans;
ans = 0;
for (auto po = d.begin(); po != d.end();)
{
pair<int, int> tem = *po;
cnt = 0;
if (tem.first < prime[i])
{
po++;
continue;
}
else
{
flag = 0;
while (tem.first % prime[i] == 0)
{
tem.first /= prime[i];
cnt++;
//cout<<i<<endl;
}
cnt *= tem.second;
auto pi = po;
po++;
d.erase(pi);
if (tem.first != 1)
d[tem.first] += tem.second;
}
ans += cnt;
}
cnt = cnt2 - ans;
if (cnt == 0)
continue;
else if (cnt < 0)
{
cnt = -cnt;
int temp = 1;
int j = 0;
for (; j < cnt; j++)
{
temp *= prime[i];
if (temp * prime[i] > 10000000)
{
a[3].push_back(temp);
// cout << 1 << endl;
temp = 1;
}
}
a[3].push_back(temp);
}
else
{
int temp = 1;
int j = 0;
for (; j < cnt; j++)
{
temp *= prime[i];
if (temp * prime[i] > 10000000)
{
a[2].push_back(temp);
// cout << 1 << endl;
temp = 1;
}
}
a[2].push_back(temp);
}
if (flag)
break;
}
if (a[2].size() == 0)
a[2].push_back(1);
if (a[3].size() == 0)
a[3].push_back(1);
cout << a[2].size() << " " << a[3].size() << endl;
for (int i = 0; i < a[2].size(); ++i)
printf("%d ", a[2][i]);
puts("");
for (int i = 0; i < a[3].size(); ++i)
printf("%d ", a[3][i]);
puts("");
}
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int n, m, tot, a[100005], b[100005], z[10000005], pos[10000005], q[1000005], t1[1000005], t2[1000005];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = 1; i <= m; ++i)
scanf("%d", &b[i]);
for (int i = 2; i <= 10000000; ++i)
if (!z[i])
{
for (int j = i; j <= 10000000; j += i)
z[j] = i;
q[++tot] = i;
pos[i] = tot;
}
for (int i = 1; i <= n; ++i)
{
int k = a[i];
while (k != 1)
{
t1[pos[z[k]]]++;
k /= z[k];
}
}
for (int i = 1; i <= m; ++i)
{
int k = b[i];
while (k != 1)
{
t2[pos[z[k]]]++;
k /= z[k];
}
}
for (int i = 1; i <= tot; ++i)
{
t1[i] = min(t1[i], t2[i]);
t2[i] = t1[i];
}
printf("%d %d\n", n, m);
for (int i = 1; i <= n; ++i)
{
int k = a[i], p = a[i];
while (k != 1)
{
if (t1[pos[z[k]]])
{
p /= z[k];
t1[pos[z[k]]]--;
}
k /= z[k];
}
printf("%d ", p);
}
printf("\n");
for (int i = 1; i <= m; ++i)
{
int k = b[i], p = b[i];
while (k != 1)
{
if (t2[pos[z[k]]])
{
p /= z[k];
t2[pos[z[k]]]--;
}
k /= z[k];
}
printf("%d ", p);
}
printf("\n");
return 0;
}
CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)的更多相关文章
- CF思维联系--CodeForces - 218C E - Ice Skating (并查集)
题目地址:24道CF的DIv2 CD题有兴趣可以做一下. ACM思维题训练集合 Bajtek is learning to skate on ice. He's a beginner, so his ...
- CF思维联系– CodeForces - 991C Candies(二分)
ACM思维题训练集合 After passing a test, Vasya got himself a box of n candies. He decided to eat an equal am ...
- CF思维联系–CodeForces - 225C. Barcode(二路动态规划)
ACM思维题训练集合 Desciption You've got an n × m pixel picture. Each pixel can be white or black. Your task ...
- CF思维联系–CodeForces -224C - Bracket Sequence
ACM思维题训练集合 A bracket sequence is a string, containing only characters "(", ")", ...
- CF思维联系–CodeForces - 223 C Partial Sums(组合数学的先线性递推)
ACM思维题训练集合 You've got an array a, consisting of n integers. The array elements are indexed from 1 to ...
- CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)
ACM思维题训练集合 Furik and Rubik love playing computer games. Furik has recently found a new game that gre ...
- CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)
Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...
- P1458 顺序的分数 Ordered Fractions(有技巧的枚举)+C++类封装=精简代码
题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1,请找出所有满足条件的分数. 这有一个例子,当N=5时,所有解 ...
- CodeForce 222C Reducing Fractions
To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractio ...
随机推荐
- django-filter的基本使用
django-filter 查询 创建model和视图 from django.db import models # Create your models here. class Student(mo ...
- bootstrapTest
<!DOCTYPE html><html lang="zh-CN"> <head> <meta charset="utf-8&q ...
- 在Sping的配置文件中,关于dataSource的配置,就我们常用的方法大致可以有三种:
在Sping的配置文件中,关于dataSource的配置,就我们常用的方法大致可以有三种: 1.一般的配置方法,直接在配置中指定其值.具体的例子我们参照Mysql的配置如下: <bean id= ...
- ClassLoader类加载器浅见
类加载器 类加载器,它拿到.class文件,它会把他拆成两部分,将static数据转换成方法区的数据结构,然后把他放在了方法区之中. 然后在堆里面建一个类对象(Class,它可以用来实例化对象),然后 ...
- Linux终端命令格式
01.终端命令格式 command [-options] [parameter] 说明: command:命令名,响应功能的英文单词或单词的缩写 [-options]:选项,可用来对命令进行控制,也可 ...
- Salesforce 开发 | Salesforce与微信集成实操指南
配置前须知 Salesforce通过试点对特定客户提供Lightning WeChat Messaging,该试点需要同意特定的条款.除非Salesforce宣布WeChat Messaging全面可 ...
- 数据结构(C语言版)---线性表链式存储表示
1.单链表:线性表的链式存储. 1)特点:用一组任意的存储单元存储数据元素(存储单元可以连续,也可以不连续),逻辑上相邻的元素存储位置不一定相邻. 2)结点包括两个域:数据域(存储数据元素信息).指针 ...
- stand up meeting 12/9/2015
part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 -------------- -- ----------- -- PDF Reader 朱玉影 SDK终于差不 ...
- GCD - Extreme (II) UVA - 11426 欧拉函数与gcd
题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b ...
- tensorflow--filter、strides
最近还在看<TensorFlow 实战Google深度学习框架第二版>这本书,根据第六章里面对于卷基层和池化层的介绍可以发现,在执行 tf.nn.conv2d 和 tf.nn.max_po ...