D. Chloe and pleasant prizes
                                                           time limit per test 2 seconds
                                                     memory limit per test 256 megabytes
                                                                 input  standard input
                                                                output  standard output

Generous sponsors of the olympiad in which Chloe and Vladik took part allowed all the participants to choose a prize for them on their own. Christmas is coming, so sponsors decided to decorate the Christmas tree with their prizes.

They took n prizes for the contestants and wrote on each of them a unique id (integer from 1 to n). A gift i is characterized by integer ai — pleasantness of the gift. The pleasantness of the gift can be positive, negative or zero. Sponsors placed the gift 1 on the top of the tree. All the other gifts hung on a rope tied to some other gift so that each gift hung on the first gift, possibly with a sequence of ropes and another gifts. Formally, the gifts formed a rooted tree with n vertices.

The prize-giving procedure goes in the following way: the participants come to the tree one after another, choose any of the remaining gifts and cut the rope this prize hang on. Note that all the ropes which were used to hang other prizes on the chosen one are not cut. So the contestant gets the chosen gift as well as the all the gifts that hang on it, possibly with a sequence of ropes and another gifts.

Our friends, Chloe and Vladik, shared the first place on the olympiad and they will choose prizes at the same time! To keep themselves from fighting, they decided to choose two different gifts so that the sets of the gifts that hang on them with a sequence of ropes and another gifts don't intersect. In other words, there shouldn't be any gift that hang both on the gift chosen by Chloe and on the gift chosen by Vladik. From all of the possible variants they will choose such pair of prizes that the sum of pleasantness of all the gifts that they will take after cutting the ropes is as large as possible.

Print the maximum sum of pleasantness that Vladik and Chloe can get. If it is impossible for them to choose the gifts without fighting, print Impossible.

Input

The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of gifts.

The next line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the pleasantness of the gifts.

The next (n - 1) lines contain two numbers each. The i-th of these lines contains integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the description of the tree's edges. It means that gifts with numbers ui and vi are connected to each other with a rope. The gifts' ids in the description of the ropes can be given in arbirtary order: vi hangs on ui or ui hangs on vi.

It is guaranteed that all the gifts hang on the first gift, possibly with a sequence of ropes and another gifts.

Output

If it is possible for Chloe and Vladik to choose prizes without fighting, print single integer — the maximum possible sum of pleasantness they can get together.

Otherwise print Impossible.

Examples
Input
8
0 5 -1 4 3 2 6 5
1 2
2 4
2 5
1 3
3 6
6 7
6 8
Output
25
Input
4
1 -5 1 1
1 2
1 4
2 3
Output
2
Input
1
-1
Output
Impossible

题目就是让你找出两棵不相交的子树使得这两棵子树结点权值和最大。
那么对于每个结点,如果他有大于等于两个儿子,那么就计算出他的后代中权值最大的两棵不相交的子树,
这两棵子树的信息传递到他的几个儿子上。(几个儿子中挑两个最大的)
那么最后总的贪心一下排个序统计一下就好了。
具体细节可以看代码。
 #include <bits/stdc++.h>

 using namespace std;

 #define rep(i,a,b)              for(int i(a); i <= (b); ++i)
#define for_edge(i,x) for(int i = H[x]; i; i = X[i])
#define LL long long
#define PB push_back
#define sz(x) (int)v[x].size() const int N = + ; vector <LL> v[N]; LL sum[N];
LL a[N];
int E[N << ], H[N << ], X[N << ];
int x, y, n;
int et = ;
LL ret[N];
LL c[N]; inline void addedge(int a, int b){
E[++et] = b, X[et] = H[a], H[a] = et;
E[++et] = a, X[et] = H[b], H[b] = et;
} void dfs(int x, int fa){
sum[x] = a[x];
for_edge(i, x){
int now = E[i];
if (now != fa){
dfs(now, x);
sum[x] += sum[now];
}
}
} void dfs2(int x, int fa){
ret[x] = sum[x];
for_edge(i, x){
int now = E[i];
if (now == fa) continue;
dfs2(now, x);
v[x].PB(ret[now]);
ret[x] = max(ret[x], ret[now]);
}
} bool cmp(LL a, LL b){ return a > b;} int main(){ scanf("%d", &n);
rep(i, , n) scanf("%lld", &a[i]); rep(i, , n - ){
scanf("%d%d", &x, &y);
addedge(x, y);
} dfs(, );
dfs2(, ); LL ans = -1000000000000000000LL; rep(i, , n) if (sz(i) > ) sort(v[i].begin(), v[i].end(), cmp);
rep(i, , n) if (sz(i) > ) ans = max(ans, v[i][] + v[i][]); if (ans != -1000000000000000000LL) printf("%lld\n", ans);
else puts("Impossible"); return ; }

Codeforces 743D Chloe and pleasant prizes(树型DP)的更多相关文章

  1. codeforces 743D. Chloe and pleasant prizes(树形dp)

    题目链接:http://codeforces.com/contest/743/problem/D 大致思路挺简单的就是找到一个父节点然后再找到其两个字节点总值的最大值. 可以设一个dp[x]表示x节点 ...

  2. CodeForces - 743D Chloe and pleasant prizes

    Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. [Codeforces743D][luogu CF743D]Chloe and pleasant prizes[树状DP入门][毒瘤数据]

    这个题的数据真的很毒瘤,身为一个交了8遍的蒟蒻的呐喊(嘤嘤嘤) 个人认为作为一个树状DP的入门题十分合适,同时建议做完这个题之后再去做一下这个题 选课 同时在这里挂一个选取节点型树形DP的状态转移方程 ...

  4. Codeforces 581F Zublicanes and Mumocrates(树型DP)

    题目链接  Round 322 Problem F 题意  给定一棵树,保证叶子结点个数为$2$(也就是度数为$1$的结点),现在要把所有的点染色(黑或白) 要求一半叶子结点的颜色为白,一半叶子结点的 ...

  5. 【题解】codeforces 219D Choosing Capital for Treeland 树型dp

    题目描述 Treeland国有n个城市,这n个城市连成了一颗树,有n-1条道路连接了所有城市.每条道路只能单向通行.现在政府需要决定选择哪个城市为首都.假如城市i成为了首都,那么为了使首都能到达任意一 ...

  6. Codeforces 743D:Chloe and pleasant prizes(树形DP)

    http://codeforces.com/problemset/problem/743/D 题意:求最大两个的不相交子树的点权和,如果没有两个不相交子树,那么输出Impossible. 思路:之前好 ...

  7. Codeforces Gym100962J:Jimi Hendrix(树型DP)

    http://codeforces.com/gym/100962/attachments 题意:有一个n个节点的字母树,给出n-1条边的信息,代表边上有一个字母,然后给出长度为m的字符串,问是否能在这 ...

  8. Codeforces Round #384 (Div. 2)D - Chloe and pleasant prizes 树形dp

    D - Chloe and pleasant prizes 链接 http://codeforces.com/contest/743/problem/D 题面 Generous sponsors of ...

  9. D. Chloe and pleasant prizes

    D. Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input ...

随机推荐

  1. git---gui使用

    1.登陆的命令: git config –global user.email "1455971532@qq.com" git config –global user.name &q ...

  2. 项目中的小点_java项目某jsp页面报404

    1.将项目文件夹直接放在tomcat服务器的webapps路径下 2.从一个tomcat服务器webapps下拷贝一个项目到另一个tomcat服务器webapps路径下 3.重启tomcat后,访问新 ...

  3. 排查和处理一台被攻击的linux系统及其事后分析

    11:40 2018/3/16 发现最近几天服务器流量异常的大,检查了系统命令发现命令最近的修改时间很近,检查dns配置也发现了异常的dns服务器地址. 考虑到事态的严重性,铲掉这个系统重新搭建. 事 ...

  4. SXCPC2018 nucoj2005 大闹上兰帝国

    超 dark van♂全背包 ref1 ref2 #include <iostream> #include <cstring> #include <cstdio> ...

  5. IOS开发学习笔记010-面向对象的三大特性

    面向对象的三大特性 1.封装 2.继承 3.多态 一.封装 将类内部的属性保护起来,在外部不能直接访问,那么如果需要访问怎么办呢? OC提供了set方法来对成员变量进行访问 set方法 1.作用:提供 ...

  6. Vue+Django REST framework打造生鲜电商项目

    1-1 课程导学 2-1 Pycharm的安装和简单使用 2-2 MySQL和Navicat的安装和使用 2-3 Windows和Linux下安装Python2和Python3 2-4 虚拟环境的安装 ...

  7. Detect Vertical&Horizontal Segments By OpenCV

    Detect Vertical&Horizontal Segments By OpenCV,and Save the data to csv. Steps: Using adaptiveThr ...

  8. Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸

    Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸 下面的图显示的是RNN的结果以及数据前向流动方向 假设有 \[ \begin{split} h_t & ...

  9. DownloadManager的使用

    DownloadManager是系统开放给第三方应用使用的类,包含两个静态内部类DownloadManager.Query和DownloadManager.Request.DownloadManage ...

  10. hdu 4185 二分图最大匹配

    Oil Skimming Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...