[SPOJ7001]VLATTICE - Visible Lattice Points
题目大意:
$q(q\leq50)$组询问,对于给定的$n(n\leq10^7)$,求$\displaystyle\sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^n[\gcd(i,j,k)=1]$。
思路:
$原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=;
bool vis[N];
int mu[N],sum[N],p[M];
inline void sieve() {
mu[]=;
for(register int i=;i<N;i++) {
if(!vis[i]) {
p[++p[]]=i;
mu[i]=-;
}
for(register int j=;j<=p[]&&i*p[j]<N;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) {
mu[i*p[j]]=;
break;
} else {
mu[i*p[j]]=-mu[i];
}
}
}
for(register int i=;i<N;i++) {
sum[i]=sum[i-]+mu[i];
}
}
int main() {
sieve();
for(register int T=getint();T;T--) {
const int n=getint();
int64 ans=;
for(register int i=,j;i<=n;i=j+) {
j=n/(n/i);
ans+=(sum[j]-sum[i-])*((int64)(n/i)*(n/i)*(n/i)+(int64)(n/i)*(n/i)*+(n/i)*);
}
printf("%lld\n",ans);
}
return ;
}
原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。
[SPOJ7001]VLATTICE - Visible Lattice Points的更多相关文章
- SPOJ1007 VLATTICE - Visible Lattice Points
VLATTICE - Visible Lattice Points no tags Consider a N*N*N lattice. One corner is at (0,0,0) and th ...
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)
题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1 a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...
- SPOJ—VLATTICE Visible Lattice Points(莫比乌斯反演)
http://www.spoj.com/problems/VLATTICE/en/ 题意: 给一个长度为N的正方形,从(0,0,0)能看到多少个点. 思路:这道题其实和能量采集是差不多的,只不过从二维 ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演
这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...
- SPOJ VLATTICE - Visible Lattice Points 【“小”大数加减】
题目链接 一道比较简单的莫比乌斯反演,不过ans会爆long long,我是用结构体来存结果的,结构体中两个LL型变量分别存大于1e17和小于1e17的部分 #include<bits/stdc ...
- SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解
题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...
随机推荐
- codeforce830A. Office Keys
A. Office Keys time limit per test: 2 seconds memory limit per test: 256 megabytes input standard: i ...
- SXCPC2018 nucoj1999 占领城市
#include <iostream> #include <cstring> #include <cstdio> #include <queue> us ...
- 项目管理者必知:适用于仪表盘项目的7个优秀JavaScript库
仪表盘是用于目标或业务流程的视觉指示工具,也用于切割杂乱无章的数据,从而分割出要点的重要工具.它可以帮助评估信息并及时做出正确的决定,一款实时可视化的仪表盘通常由图标.测绘图.图形符号以及数据表格等组 ...
- 《HTTP协议详解》读书笔记---请求篇之消息报头
不管是请求消息还是响应消息都包含消息报头,那么消息报头包含哪些内容?他们都代表什么含义呢?以下将带着 这些问题去学习消息报头. http消息(不管是请求消息还是响应消息)都是由开始行,消息报头(可选) ...
- Leetcode 503.下一个更大元素
下一个更大元素 给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素.数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你 ...
- win7分盘(复制)
1/10 右击“计算机”选择“管理” 2/10 打开管理之后点击“磁盘管理器”,在想要新建磁盘的分区上右击,点击“压缩卷” 3/10 在“输入压缩空间量”后面输入需要新建磁盘的大小,输入的单位为MB( ...
- webform登陆界面样式丢失
本文摘抄自:http://blog.csdn.net/sssix/article/details/16945347 请阅读原文. Forms验证——登录界面样式实效? <authenticati ...
- RUBY 模拟rtsp消息
require 'rtsp/client' require 'log_switch' require 'socket' RTSP::Client.log? # => false RTSP::Cl ...
- HDU 2036 求任意多边形面积向量叉乘
三角形的面积可以使用向量的叉积来求: 对于 三角形的面积 等于: [(x2 - x1)*(y3 - y1)- ( y2 - y1 ) * ( x3 - x1 ) ] / 2.0 但是面积是有方向的, ...
- BZOJ2121 字符串游戏 【dp】
题目链接 BZOJ2121 题解 dp怎么那么神呐QAQ 我们要求出最小字符串长度 我们设一个\(dp[i]\)表示前\(i\)个字符最后所形成的最短字符串长度 对于第\(i\)个字符,要么保留,就是 ...