[SPOJ7001]VLATTICE - Visible Lattice Points
题目大意:
$q(q\leq50)$组询问,对于给定的$n(n\leq10^7)$,求$\displaystyle\sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^n[\gcd(i,j,k)=1]$。
思路:
$原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=;
bool vis[N];
int mu[N],sum[N],p[M];
inline void sieve() {
mu[]=;
for(register int i=;i<N;i++) {
if(!vis[i]) {
p[++p[]]=i;
mu[i]=-;
}
for(register int j=;j<=p[]&&i*p[j]<N;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) {
mu[i*p[j]]=;
break;
} else {
mu[i*p[j]]=-mu[i];
}
}
}
for(register int i=;i<N;i++) {
sum[i]=sum[i-]+mu[i];
}
}
int main() {
sieve();
for(register int T=getint();T;T--) {
const int n=getint();
int64 ans=;
for(register int i=,j;i<=n;i=j+) {
j=n/(n/i);
ans+=(sum[j]-sum[i-])*((int64)(n/i)*(n/i)*(n/i)+(int64)(n/i)*(n/i)*+(n/i)*);
}
printf("%lld\n",ans);
}
return ;
}
原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。
[SPOJ7001]VLATTICE - Visible Lattice Points的更多相关文章
- SPOJ1007 VLATTICE - Visible Lattice Points
VLATTICE - Visible Lattice Points no tags Consider a N*N*N lattice. One corner is at (0,0,0) and th ...
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)
题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1 a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...
- SPOJ—VLATTICE Visible Lattice Points(莫比乌斯反演)
http://www.spoj.com/problems/VLATTICE/en/ 题意: 给一个长度为N的正方形,从(0,0,0)能看到多少个点. 思路:这道题其实和能量采集是差不多的,只不过从二维 ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演
这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...
- SPOJ VLATTICE - Visible Lattice Points 【“小”大数加减】
题目链接 一道比较简单的莫比乌斯反演,不过ans会爆long long,我是用结构体来存结果的,结构体中两个LL型变量分别存大于1e17和小于1e17的部分 #include<bits/stdc ...
- SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解
题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...
随机推荐
- C# Redis存Session Hash存对象
1.新建一个控制台程序,并新建一个类“UserInfo” 2.从github下载redis的windows服务 https://github.com/ServiceStack/redis-window ...
- Redis实现之复制(一)
复制 在Redis中,用户可以通过执行SLAVEOF命令或者设置slaveof选项,让一个服务器去复制(replicate)另一个服务器,我们称呼被复制的服务器为主服务器(master),而对主服务器 ...
- TCP/IP网络编程之优雅地断开套接字
基于TCP套接字的半关闭 Linux的close函数和Windows的closesocket函数意味着完全断开连接,完全断开连接不仅指无法传输数据,而且也不能接收数据.因此,在某些情况下,通信一方调用 ...
- loj2052 「HNOI2016」矿区
学习一发平面图的姿势--ref #include <algorithm> #include <iostream> #include <cstdio> #includ ...
- 55、android app借助友盟实现微信授权登录
一.去微信开放平台的管理中心申请移动设备的审核(需进行开发者资质认证,每年300元) 1.获取应用的签名 2.在微信开放平台申请移动应用 两个注意点:①签名要填对 ②应用的包名要写对(tips: co ...
- PDO 连接与连接管理
连接是通过创建 PDO 基类的实例而建立的.不管使用哪种驱动程序,都是用 PDO 类名. 构造函数接收用于指定数据库源(所谓的 DSN)以及可能还包括用户名和密码(如果有的话)的参数. 连接到 MyS ...
- 收藏网址 jquery学习
http://www.zhangxinxu.com/wordpress/2009/08/jquery-%E5%8D%95%E5%87%BB%E6%96%87%E5%AD%97%E6%88%96%E5% ...
- HDU5857 Median 模拟
Median HDU - 5857 There is a sorted sequence A of length n. Give you m queries, each one contains fo ...
- Unity 查找
GameObject.Find().Transform.Find查找游戏对象 1.前置条件 Unity中常用到查找对象,非隐藏的.隐藏的,各种方法性能有高有低,使用又有各种条件限制. 在此对查找的性能 ...
- vim configure
vim configure .vimrc " An example for a vimrc file. " " Maintainer: Bram Moolenaar &l ...