https://www.luogu.org/problemnew/show/P1593#sub

利用约数和定理:可以去看一下公式第13条

然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然后给指数乘上$b$.

然后我们就需要计算$(1+p+p^2+....p^k)$因为k可能特别大,所以直接计算是不可能了。

看完公式后,我们当然可以利用等比公式计算了,然而还要求逆元,这题不用那么麻烦啦。

费马小定理可以解决这个问题:公式第14条

$$a^x \equiv a^{\mu(x)}mod p,\mu(x)=x-1 $$

因为模数比较小那么在我们计算的时候显然会有循环节的出现,那么我们只需要计算这个循环节就好了。

然后将每一个质因数的答案想乘就可以得到答案啦。

注意开$long long$

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
#define mod 9901
#define LL long long
LL a,b,x;
LL pri[],cnt[],ans,tot,pw[];
int main()
{
cin>>a>>b;
x=a;
for(int i=;i*i<=a;i++)
{
if(x%i==)
{
pri[++tot]=i;
while(x%i==)
{
cnt[tot]++;
x/=i;
}
}
}
if(x!=)
{
pri[++tot]=x;
cnt[tot]=;
}
ans=;
for(int i=;i<=tot;i++)cnt[i]*=b;
for(int i=tot;i>=;i--)
{
pw[]=;
LL s=,as=;
for(int j=;j<=&&j<=cnt[i];j++)
{
pw[j]=pw[j-]*pri[i]%mod;
(s=s+pw[j])%=mod;
if(cnt[i]%==j)as=s;
}
ans=(ans*((cnt[i]/)*s+as)%mod)%mod;
}
cout<<ans;
}

洛谷 P1593 因子和的更多相关文章

  1. 洛谷P1593 因子和

    题目描述 输入两个正整数a和b,求a^b的因子和.结果太大,只要输出它对9901的余数. 输入输出格式 输入格式: 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式: a^b的因 ...

  2. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  3. 洛谷 P1593 因子和 || Sumdiv POJ - 1845

    以下弃用 这是一道一样的题(poj1845)的数据 没错,所有宣称直接用逆元/快速幂+费马小定理可做的,都会被hack掉(包括大量题解及AC代码) 什么原因呢?只是因为此题的模数太小了...虽然990 ...

  4. 洛谷 P1593 因子和 题解

    题面 这道题在数学方面没什么难度: 对于每一个正整数n: 质因数分解后可以写成n=a1^k1a2^k2……*ai^ki 所求的数的因数和f(n)就等于f(n)=(1+a1+a1^2+……+a1^k1) ...

  5. 洛谷P1244 青蛙过河 DP/思路

    又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...

  6. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  7. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  8. 【洛谷2617_BZOJ1901】Dynamic Rankings(树套树)

    题目: 洛谷 2617 BZOJ 1901 是权限题,\(n=10^4\) ,内存 128 MB :洛谷 2617 \(n=10^5\) ,内存 1024 MB ,数据比较坑. 分析: 蒟蒻初学树套树 ...

  9. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

随机推荐

  1. 升级了git版本后git clone报ssl错误的解决方法

    由于升级了git版本,git clone 的时候报了如下的错误 fatal: unable to access 'https://github.com/open-falcon/falcon-plus. ...

  2. php对数组操作的函数

    array_reverse  以相反的顺序返回数组 array_unique 数组元素去重(只对一维数组有效) array_intersect两个或多个数组取交集   implode和explode也 ...

  3. Codeforces Round 56-C. Mishka and the Last Exam(思维+贪心)

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  4. poj3728The merchant树剖+线段树

    如果直接在一条直线上,那么就建线段树 考虑每一个区间维护最小值和最大值和答案,就符合了合并的条件,一个log轻松做 那么在树上只要套一个树剖就搞定了,多一个log也不是问题 注意考虑在树上的话每一条链 ...

  5. echart option属性

    option 图表选项,包含图表实例任何可配置选项: 公共选项 , 组件选项 , 数据选项 名称 描述 {color}backgroundColor 全图默认背景,(详见backgroundColor ...

  6. guacamole的复制粘贴

    一.发送中文或文本(针对开发环境,生产环境不需变动) 官方下载的完整版js缺失了一部分关于粘贴板的代码,调用setclipboard方法,将外部内容复制到粘贴板的时候,提示方法不存在.需要补齐这部分源 ...

  7. 30道python真实面试题(搜集到的,看看其实都是基础)

    1.一行代码实现1-100之间和 In [1]: sum(range(0,101)) Out[1]: 5050 2.如何在一个函数内部修改全局变量 利用global修改全局变量 In [2]: a = ...

  8. Announcing .NET Core 2.1

    Announcing .NET Core 2.1 https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1/ ...

  9. STM32开关总中断

    引用 http://www.amobbs.com/forum.php?mod=viewthread&tid=5397451 在 STM32/Cortex-M3 中是通过改变 CPU 的当前优先 ...

  10. RDL Web报表抛出ReportServerException,已取消该操作

    ::, RsBase() [ERROR] - Microsoft.Reporting.WebForms.ReportServerException: 已取消该操作. ---> System.Op ...