Spark MLlib + maven + scala 试水~
- 使用SGD算法逻辑回归的垃圾邮件分类器
package com.oreilly.learningsparkexamples.scala
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.regression.LabeledPoint
object MLlib {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName(s"MLlib example")
val sc = new SparkContext(conf)
// Load 2 types of emails from text files: spam and ham (non-spam).
// Each line has text from one email.
val spam = sc.textFile("files/spam.txt")
val ham = sc.textFile("files/ham.txt")
// Create a HashingTF instance to map email text to vectors of 100 features.
val tf = new HashingTF(numFeatures = 100)
// Each email is split into words, and each word is mapped to one feature.
val spamFeatures = spam.map(email => tf.transform(email.split(" ")))
val hamFeatures = ham.map(email => tf.transform(email.split(" ")))
// Create LabeledPoint datasets for positive (spam) and negative (ham) examples.
val positiveExamples = spamFeatures.map(features => LabeledPoint(1, features))
val negativeExamples = hamFeatures.map(features => LabeledPoint(0, features))
val trainingData = positiveExamples ++ negativeExamples
trainingData.cache() // Cache data since Logistic Regression is an iterative algorithm.
// Create a Logistic Regression learner which uses the SGD.
val lrLearner = new LogisticRegressionWithSGD()
// Run the actual learning algorithm on the training data.
val model = lrLearner.run(trainingData)
// Test on a positive example (spam) and a negative one (ham).
// First apply the same HashingTF feature transformation used on the training data.
val posTestExample = tf.transform("O M G GET cheap stuff by sending money to ...".split(" "))
val negTestExample = tf.transform("Hi Dad, I started studying Spark the other ...".split(" "))
// Now use the learned model to predict spam/ham for new emails.
println(s"Prediction for positive test example: ${model.predict(posTestExample)}")
println(s"Prediction for negative test example: ${model.predict(negTestExample)}")
sc.stop()
}
}
spam.txt
Dear sir, I am a Prince in a far kingdom you have not heard of. I want to send you money via wire transfer so please ...
Get Viagra real cheap! Send money right away to ...
Oh my gosh you can be really strong too with these drugs found in the rainforest. Get them cheap right now ...
YOUR COMPUTER HAS BEEN INFECTED! YOU MUST RESET YOUR PASSWORD. Reply to this email with your password and SSN ...
THIS IS NOT A SCAM! Send money and get access to awesome stuff really cheap and never have to ...
ham.txt
Dear Spark Learner, Thanks so much for attending the Spark Summit 2014! Check out videos of talks from the summit at ...
Hi Mom, Apologies for being late about emailing and forgetting to send you the package. I hope you and bro have been ...
Wow, hey Fred, just heard about the Spark petabyte sort. I think we need to take time to try it out immediately ...
Hi Spark user list, This is my first question to this list, so thanks in advance for your help! I tried running ...
Thanks Tom for your email. I need to refer you to Alice for this one. I haven't yet figured out that part either ...
Good job yesterday! I was attending your talk, and really enjoyed it. I want to try out GraphX ...
Summit demo got whoops from audience! Had to let you know. --Joe
- maven打包scala程序
├── pom.xml
├── README.md
├── src
│ └── main
│ └── scala
│ └── com
│ └── learningsparkexamples
│ └── scala
│ └── MLlib.scala
MLlib.scala 就是上面写的scala代码,pom.xml 是 maven 编译时候的 配置 文件:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>my.demo</groupId>
<artifactId>sparkdemo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<!--编译时候 java版本
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
-->
<encoding>UTF-8</encoding>
<scala.tools.version>2.10</scala.tools.version>
<!-- Put the Scala version of the cluster -->
<scala.version>2.10.5</scala.version>
</properties>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.10.5</version>
</dependency>
</dependencies>
<build>
<pluginManagement>
<plugins>
<plugin>
<!--用来编译scala的-->
<groupId>net.alchim31.maven</groupId>
<artifactId>
scala-maven-plugin</artifactId>
<version>3.1.5</version>
</plugin>
</plugins>
</pluginManagement>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>
process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
其中:
import org.apache.spark.{SparkConf, SparkContext}
所需要的依赖包配置是:
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.regression.LabeledPoint
所需要的依赖包配置是:
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>
配置的时候要注意spark 和 scala 的版本,可以打开spark-shell 观察:

配置完成后,在pom.xml 所在的目录运行命令:
mvn clean && mvn compile && mvn package
如果mvn 下载 有问题,可以参考这篇博文:http://www.cnblogs.com/xiaoyesoso/p/5489822.html 的 3. Bulid GitHub Spark Runnable Distribution
- spark运行项目
mvn编译打包完成后会pom.xml所在目录下出现一个target文件夹:
├── target
│ ├── classes
│ │ └── com
│ │ └── oreilly
│ │ └── learningsparkexamples
│ │ └── scala
│ │ ├── MLlib$$anonfun$1.class
│ │ ├── MLlib$$anonfun$2.class
│ │ ├── MLlib$$anonfun$3.class
│ │ ├── MLlib$$anonfun$4.class
│ │ ├── MLlib.class
│ │ └── MLlib$.class
│ ├── classes.-475058802.timestamp
│ ├── maven-archiver
│ │ └── pom.properties
│ ├── maven-status
│ │ └── maven-compiler-plugin
│ │ └── compile
│ │ └── default-compile
│ │ ├── createdFiles.lst
│ │ └── inputFiles.lst
│ └── sparkdemo-1.0-SNAPSHOT.jar
最后 运行命令,提交执行任务(注意两个test文件所对应的位置):
${SPARK_HOME}/bin/spark-submit --class ${package.name}.${class.name} ${PROJECT_HOME}/target/*.jar
运行结果:
caizhenwei@caizhenwei-Inspiron-:~/桌面/learning-spark$ vim mini-complete-example/src/main/scala/com/oreilly/learningsparkexamples/mini/scala/MLlib.scala caizhenwei@caizhenwei-Inspiron-:~/桌面/learning-spark$ ../bin-spark-1.6./bin/spark-submit --class com.oreilly.learningsparkexamples.scala.MLlib ./mini-complete-example/target/sparkdemo-1.0-SNAPSHOT.jar
// :: WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: WARN Utils: Your hostname, caizhenwei-Inspiron- resolves to a loopback address: 127.0.1.1; using 172.16.111.93 instead (on interface eth0)
// :: WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
// :: WARN Utils: Service 'SparkUI' could not bind on port . Attempting port .
// :: WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeSystemBLAS
// :: WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeRefBLAS
Prediction for positive test example: 1.0
Prediction for negative test example: 0.0
Spark MLlib + maven + scala 试水~的更多相关文章
- 十二、spark MLlib的scala示例
简介 spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html mllib是spark core之上的算法库,包含了丰富的机器学习 ...
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- eclipse构建maven+scala+spark工程 转载
转载地址:http://jingpin.jikexueyuan.com/article/47043.html 本文先叙述如何配置eclipse中maven+scala的开发环境,之后,叙述如何实现sp ...
- spark mllib配置pom.xml错误 Multiple markers at this line Could not transfer artifact net.sf.opencsv:opencsv:jar:2.3 from/to central (https://repo.maven.apache.org/maven2): repo.maven.apache.org
刚刚spark mllib,在maven repository网站http://mvnrepository.com/中查询mllib后得到相关库的最新dependence为: <dependen ...
- spark Using MLLib in Scala/Java/Python
Using MLLib in ScalaFollowing code snippets can be executed in spark-shell. Binary ClassificationThe ...
- Eclipse+maven+scala+spark环境搭建
准备条件 我用的Eclipse版本 Eclipse Java EE IDE for Web Developers. Version: Luna Release (4.4.0) 我用的是Eclipse ...
- 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...
- 3 分钟学会调用 Apache Spark MLlib KMeans
Apache Spark MLlib是Apache Spark体系中重要的一块拼图:提供了机器学习的模块.只是,眼下对此网上介绍的文章不是非常多.拿KMeans来说,网上有些文章提供了一些演示样例程序 ...
- Spark MLlib编程API入门系列之特征选择之卡方特征选择(ChiSqSelector)
不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). ChiSqSelector用于使用卡方检 ...
随机推荐
- Vue初始化
Vue上面的函数怎么来的 vue的打包路径 在web中使用的vue打包路径: npm run build 打包生成vue.js 下面是依次引入: src/platforms/web/entry-run ...
- NFX UNISTACK 介绍
学习.NET Core和ASP.NET Core,偶然搜索到NFX UNISTACK,现翻译一下Readme,工程/原文:https://github.com/aumcode/nfx NFX Serv ...
- 项目用Git上传到coding
关于这样的东西,网上很多教程,这里就结合自己看的还有自己的例子来说明一下吧: 1.你得下载一个git软件并成功安装 2.生成ssh: 关于这个,我觉得似乎不是一定的,因为通过https也可以连接到co ...
- HDU 3117 Fibonacci Numbers 数学
http://acm.hdu.edu.cn/showproblem.php?pid=3117 fib是有一个数学公式的. 这里的是标准的fib公式 那么fib = 1 / sqrt(5) * ((1 ...
- zoj3765Lights(splay)
链接 splay的增删改操作. 刚开始对于某段区间首先有了lazy标记时,把其左右孩子给交换了,导致在pushup时又交换了一次而debug了n久. #include <iostream> ...
- Docker快速构建Redis集群(cluster)
Docker快速构建Redis集群(cluster) 以所有redis实例运行在同一台宿主机上为例子 搭建步骤 redis集群目录清单 . ├── Dockerfile ├── make_master ...
- VC和MATLAB混合开发需要注意的一个问题
作者:朱金灿 来源:http://blog.csdn.net/clever101 如果你的操作系统是64位操作系统,那么直接运行MATLAB的安装文件下的Setup.exe会默认安装的是64位的MAT ...
- Permutations(copy)
Given a collection of numbers, return all possible permutations. For example, [1,2,3] have the follo ...
- path与classpath区别(转)
转自http://blog.csdn.net/mydreamongo/article/details/8155408 1.path的作用 path是系统用来指定可执行文件的完整路径,即使不在path中 ...
- hihoCoder #1079 : 离散化 (线段树,数据离散化)
题意:有一块宣传栏,高一定,给出长度,再给出多张海报的张贴位置,问还能见到几张海报(哪怕有一点被看到)?假设海报的高于宣传栏同高. 思路:问题转成“给出x轴上长为L的一条线段,再用n条线段进行覆盖上去 ...