• 使用SGD算法逻辑回归的垃圾邮件分类器
 package com.oreilly.learningsparkexamples.scala

 import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.regression.LabeledPoint object MLlib { def main(args: Array[String]) {
val conf = new SparkConf().setAppName(s"MLlib example")
val sc = new SparkContext(conf) // Load 2 types of emails from text files: spam and ham (non-spam).
// Each line has text from one email.
val spam = sc.textFile("files/spam.txt")
val ham = sc.textFile("files/ham.txt") // Create a HashingTF instance to map email text to vectors of 100 features.
val tf = new HashingTF(numFeatures = 100)
// Each email is split into words, and each word is mapped to one feature.
val spamFeatures = spam.map(email => tf.transform(email.split(" ")))
val hamFeatures = ham.map(email => tf.transform(email.split(" "))) // Create LabeledPoint datasets for positive (spam) and negative (ham) examples.
val positiveExamples = spamFeatures.map(features => LabeledPoint(1, features))
val negativeExamples = hamFeatures.map(features => LabeledPoint(0, features))
val trainingData = positiveExamples ++ negativeExamples
trainingData.cache() // Cache data since Logistic Regression is an iterative algorithm. // Create a Logistic Regression learner which uses the SGD.
val lrLearner = new LogisticRegressionWithSGD()
// Run the actual learning algorithm on the training data.
val model = lrLearner.run(trainingData) // Test on a positive example (spam) and a negative one (ham).
// First apply the same HashingTF feature transformation used on the training data.
val posTestExample = tf.transform("O M G GET cheap stuff by sending money to ...".split(" "))
val negTestExample = tf.transform("Hi Dad, I started studying Spark the other ...".split(" "))
// Now use the learned model to predict spam/ham for new emails.
println(s"Prediction for positive test example: ${model.predict(posTestExample)}")
println(s"Prediction for negative test example: ${model.predict(negTestExample)}") sc.stop()
}
}
spam.txt
Dear sir, I am a Prince in a far kingdom you have not heard of.  I want to send you money via wire transfer so please ...
Get Viagra real cheap! Send money right away to ...
Oh my gosh you can be really strong too with these drugs found in the rainforest. Get them cheap right now ...
YOUR COMPUTER HAS BEEN INFECTED! YOU MUST RESET YOUR PASSWORD. Reply to this email with your password and SSN ...
THIS IS NOT A SCAM! Send money and get access to awesome stuff really cheap and never have to ...
ham.txt
Dear Spark Learner, Thanks so much for attending the Spark Summit 2014!  Check out videos of talks from the summit at ...
Hi Mom, Apologies for being late about emailing and forgetting to send you the package. I hope you and bro have been ...
Wow, hey Fred, just heard about the Spark petabyte sort. I think we need to take time to try it out immediately ...
Hi Spark user list, This is my first question to this list, so thanks in advance for your help! I tried running ...
Thanks Tom for your email. I need to refer you to Alice for this one. I haven't yet figured out that part either ...
Good job yesterday! I was attending your talk, and really enjoyed it. I want to try out GraphX ...
Summit demo got whoops from audience! Had to let you know. --Joe
  • maven打包scala程序
├── pom.xml
├── README.md
├── src
│ └── main
│ └── scala
│ └── com
│ └── learningsparkexamples
│ └── scala
│ └── MLlib.scala
MLlib.scala 就是上面写的scala代码,pom.xml 是 maven 编译时候的 配置 文件:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>my.demo</groupId>
<artifactId>sparkdemo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<!--编译时候 java版本
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
-->
<encoding>UTF-8</encoding>
<scala.tools.version>2.10</scala.tools.version>
<!-- Put the Scala version of the cluster -->
<scala.version>2.10.5</scala.version>
</properties>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.10.5</version>
</dependency>
</dependencies>
<build>
<pluginManagement>
<plugins>
<plugin>
<!--用来编译scala的-->
<groupId>net.alchim31.maven</groupId>
<artifactId>
scala-maven-plugin</artifactId>
<version>3.1.5</version>
</plugin>
</plugins>
</pluginManagement>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>
process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
其中:
import org.apache.spark.{SparkConf, SparkContext}

所需要的依赖包配置是:

  <dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>

 
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.regression.LabeledPoint

所需要的依赖包配置是:

 <dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.6.1</version>
<scope>provided</scope>
</dependency>

配置的时候要注意spark 和 scala 的版本,可以打开spark-shell 观察:

配置完成后,在pom.xml 所在的目录运行命令:

mvn clean && mvn compile && mvn package

如果mvn 下载 有问题,可以参考这篇博文:http://www.cnblogs.com/xiaoyesoso/p/5489822.html 的 3. Bulid GitHub Spark Runnable Distribution

  • spark运行项目

mvn编译打包完成后会pom.xml所在目录下出现一个target文件夹:

├── target
│ ├── classes
│ │ └── com
│ │ └── oreilly
│ │ └── learningsparkexamples
│ │ └── scala
│ │ ├── MLlib$$anonfun$1.class
│ │ ├── MLlib$$anonfun$2.class
│ │ ├── MLlib$$anonfun$3.class
│ │ ├── MLlib$$anonfun$4.class
│ │ ├── MLlib.class
│ │ └── MLlib$.class
│ ├── classes.-475058802.timestamp
│ ├── maven-archiver
│ │ └── pom.properties
│ ├── maven-status
│ │ └── maven-compiler-plugin
│ │ └── compile
│ │ └── default-compile
│ │ ├── createdFiles.lst
│ │ └── inputFiles.lst
│ └── sparkdemo-1.0-SNAPSHOT.jar

最后 运行命令,提交执行任务(注意两个test文件所对应的位置):

${SPARK_HOME}/bin/spark-submit --class ${package.name}.${class.name} ${PROJECT_HOME}/target/*.jar

运行结果:

caizhenwei@caizhenwei-Inspiron-:~/桌面/learning-spark$ vim mini-complete-example/src/main/scala/com/oreilly/learningsparkexamples/mini/scala/MLlib.scala caizhenwei@caizhenwei-Inspiron-:~/桌面/learning-spark$ ../bin-spark-1.6./bin/spark-submit --class com.oreilly.learningsparkexamples.scala.MLlib ./mini-complete-example/target/sparkdemo-1.0-SNAPSHOT.jar
// :: WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: WARN Utils: Your hostname, caizhenwei-Inspiron- resolves to a loopback address: 127.0.1.1; using 172.16.111.93 instead (on interface eth0)
// :: WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
// :: WARN Utils: Service 'SparkUI' could not bind on port . Attempting port .
// :: WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeSystemBLAS
// :: WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeRefBLAS
Prediction for positive test example: 1.0
Prediction for negative test example: 0.0

Spark MLlib + maven + scala 试水~的更多相关文章

  1. 十二、spark MLlib的scala示例

    简介 spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html mllib是spark core之上的算法库,包含了丰富的机器学习 ...

  2. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  3. eclipse构建maven+scala+spark工程 转载

    转载地址:http://jingpin.jikexueyuan.com/article/47043.html 本文先叙述如何配置eclipse中maven+scala的开发环境,之后,叙述如何实现sp ...

  4. spark mllib配置pom.xml错误 Multiple markers at this line Could not transfer artifact net.sf.opencsv:opencsv:jar:2.3 from/to central (https://repo.maven.apache.org/maven2): repo.maven.apache.org

    刚刚spark mllib,在maven repository网站http://mvnrepository.com/中查询mllib后得到相关库的最新dependence为: <dependen ...

  5. spark Using MLLib in Scala/Java/Python

    Using MLLib in ScalaFollowing code snippets can be executed in spark-shell. Binary ClassificationThe ...

  6. Eclipse+maven+scala+spark环境搭建

    准备条件 我用的Eclipse版本 Eclipse Java EE IDE for Web Developers. Version: Luna Release (4.4.0) 我用的是Eclipse ...

  7. 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

    梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...

  8. 3 分钟学会调用 Apache Spark MLlib KMeans

    Apache Spark MLlib是Apache Spark体系中重要的一块拼图:提供了机器学习的模块.只是,眼下对此网上介绍的文章不是非常多.拿KMeans来说,网上有些文章提供了一些演示样例程序 ...

  9. Spark MLlib编程API入门系列之特征选择之卡方特征选择(ChiSqSelector)

    不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). ChiSqSelector用于使用卡方检 ...

随机推荐

  1. VMware每次联网都需要还原默认设置解决办法

    参考:https://zhidao.baidu.com/question/553464573715382812.html

  2. 20180607pip install xxx报错SyntaxError invalid syntax

    用pip安装时都要在cmd命令行里启动的,而在python中无法运行.退出python运行环境就再执行pip可以了.而且最好用管理员身份运行cmdC:\WINDOWS\system32>cd D ...

  3. centos下svn的ldap认证配置

    前提:完成svn的基本安装 一.安装sasl相关组件 #yum install -y cyrus-sasl cyrus-sasl-lib cyrus-sasl-plain 二.查看SASL版本和提供的 ...

  4. js中对象的理解

    JS中对象是可变的控件集合,对象的内容是可以更改的,可以为它添加任意属性或删除,而基本数据类型虽然拥有方法,但它们的值是不可变的,之所以它们拥有方法,是因为当它们调用方法是,后台会自动创建一个相映包装 ...

  5. MessageQueue消息队列的开启

    前言: MessageQueue消息队列形似一个保存消息的容器,发送方(例如服务程序)收集处理信息存储在队列中,接收方通过一定的协议取得队列中自己需要的信息,可以实现不同系统之间的通信: 但值得注意的 ...

  6. Mysql order by 多字段排序

    mysql单个字段降序排序: select * from table order by id desc; mysql单个字段升序排序: select * from table order by id ...

  7. org.apache.axis2.AxisFault: Service class XXXXX must have public as access Modifier解决方案

    使用Axis2工具生成客户端调用辅助类后,编写客户端调用代码运行时报错,完整错误信息如下: log4j:WARN No appenders could be found for logger (org ...

  8. Date/Time Functions and Operators (Postgres)

            http://www.postgresql.org/docs/9.1/static/functions-datetime.html   Search Documentation:  H ...

  9. codeforce Gym 100203I I WIN (网络流)

    把'I'拆成容量为1一条边,一个入点一个出点,入点和相邻的'W'连一条容量为1的边,出点和相邻的'N'连一条容量为1,所有的'W'和源点连一条容量为1边,所有的'N'和汇点连一条容量为1的边,表示只能 ...

  10. 把apk文件拖到re-sign.jar运行打开的界面找不到指定文件

    下载一个zipalign.exe放到tools目录下面就可以了 点击下载