转载:使用Pandas进行数据匹配
使用Pandas进行数据匹配
本文转载自:蓝鲸的网站分析笔记
原文链接:使用Pandas进行数据匹配
目录
Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能。与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式。 其中inner为默认的匹配模式。本篇文章我们将介绍merge函数的使用方法和4种拼接模式的区别。
下面是我们准备进行拼接的两个数据表,左边是贷款状态表loan_stats,右边为用户等级表member_grade。我们将分别用merge函数的4种匹配模式对这两个表进行拼接。
准备工作
开始使用merge函数进行数据拼接之前先导入所需的功能库,然后将分别读取两个数据表,并命名为loanstats表和member_grade表。
1
2
3
4
|
import numpy as np import pandas as pd loanstats = pd.DataFrame(pd.read_excel( 'loanStats.xlsx' ))
|
函数功能介绍
merge函数的使用方法很简单,以下是官方的函数功能介绍和使用说明。merge函数中第一个出现的数据表是拼接后的left部分,第二个出现的数据表是拼接后的right部分。第三个是数据匹配模 式,默认是inner模式。第四个参数on表示数据匹配所依据的字段名称,如果这个字段名称同时出现在两个数据表中,那么可以省略on参数的设置,merge默认会按照两个数据表中共有的字段名称进行匹配和拼接。如果两个数据表中的匹配字段名称不一致,则需要分别在left_on和right_on参数中指明两个表匹配字段的名称。如果两个数据表中没有匹配字段,需要使用索引列进行匹配和拼接,可以对left_index和right_index参数设置为True。merge还有一些排序和其他的参数,可在需要使用时进行设置。
Inner模式匹配
inner模式是merge的默认匹配模式,我们通过下面的文氏图来说明inner的匹配方法。Inner模式提供在loanstats和member_grade表中共有字段的匹配结果。也就是对两个的表交集部分进行匹配和拼接。单独只出现在一个表中的字段值不会参与匹配和拼接。
以下是使用merge函数进行拼接的代码,因为inner是默认的拼接模式,因此也可以省略how=’inner’部分。其中第一个出现的loanstats出现在拼接后的左侧,member_grade出现在拼接后的右侧。拼接后的数据表中只包含两个表的交集,因此不存在未匹配到的NaN情况。
1
|
loan_inner = pd.merge(loanstats,member_grade,how = 'inner' ) |

left模式匹配
left模式是左匹配,以左边的数据表loanstats为基础匹配右边的数据表member_grade中的内容。匹配不到的内容以NaN值显示。在Excel中就好像将Vlookup公式写在了左边的表中。下面的文氏图说明了left模式的匹配方法。Left模式匹配的结果显示了所有左边数据表的内容,以及和右边数据表共有的内容。
以下为使用left模式匹配并拼接后的结果,loanstats在merge函数中第一个出现,因此为左表,member_grade第二个出现,为右表。匹配模式为left模式。从结果中可以看出left匹配模式保留了一张完整的loanstats表,以此为基础对member_grade表中的内容进行匹配。loanstats表中有两个member_id值在member_grade中无法找到,因此grades字段显示为NaN值。
1
|
loan_left = pd.merge(loanstats,member_grade,how = 'left' ) |

right模式匹配
第三种模式是right匹配,right与left模式正好相反,right模式是右匹配,以右边的数据表member_grade为基础匹配左边的数据表loanstats。匹配不到的内容以NaN值显示。下面通过文氏图说明right模式的匹配方法。Right模式匹配的结果显示了所有右边数据表的内容,以及和左边数据表共有的内容。
以下为使用right模式匹配拼接的结果,从结果表中可以看出right匹配模式保留了完整的member_grade表,以此为基础对loanstats表进行匹配,在member_grade数据表中有两个条目在loanstats数据表中无法找到,因此显示为了NaN值。
1
|
loan_right = pd.merge(loanstats,member_grade,how = 'right' ) |
outer模式匹配
最后一种模式是outer匹配,outer模式是两个表的汇总,将loanstats和member_grade两个要匹配的两个表汇总在一起,生成一张汇总的唯一值数据表以及匹配结果。
下面是使用outer模式匹配拼接的结果,其中member_id列包含了loanstats和member_grade中的唯一值,grade列显示了对member_grade表匹配的结果,其他列则显示了对loanstats表匹配的结果 ,无法匹配的内容以NaN值显示。
1
|
loan_outer = pd.merge(loanstats,member_grade,how = 'outer' ) |

NaN值匹配问题
在进行数据匹配和拼接的过程中经常会遇到NaN值。这种情况下merge函数会如何处理呢?merge会将两个数据表中的NaN值进行交叉匹配拼接,换句话说就是将loanstats表member_id列中的NaN值
分别与member_grade表中member_id列中的每一个NaN值进行匹配,然后再拼接在一张表中。下面是包含NaN值的两张数据表进行拼接的结果,当我们使用left模式进行匹配时,loanstats作为基础
表,其中member_id列的NaN值分别与member_grade表中member_id列的每一个NaN值进行匹配。并将匹配结果显示在了结果表中。
1
|
loan_left = pd.merge(loanstats,member_grade,how = 'left' ) |
转载:使用Pandas进行数据匹配的更多相关文章
- 【转载】使用Pandas进行数据匹配
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...
- 【转载】使用Pandas对数据进行筛选和排序
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 ...
- 【转载】使用Pandas进行数据提取
使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信 ...
- 【转载】使用Pandas创建数据透视表
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...
- 基于pandas进行数据预处理
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846 ...
- 其它课程中的python---5、Pandas处理数据和读取数据
其它课程中的python---5.Pandas处理数据和读取数据 一.总结 一句话总结: 记常用和特例:慢慢慢慢的就熟了,不用太着急,慢慢来 库的使用都很简单:就是库的常用函数就这几个,后面用的时候学 ...
- Pandas查询数据的几种方法
Pandas查询数据 Pandas查询数据的几种方法 df.loc方法,根据行.列的标签值查询 df.iloc方法,根据行.列的数字位置查询 df.where方法 df.query方法 .loc既能查 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- Pandas 把数据写入csv
Pandas 把数据写入csv from sklearn import datasets import pandas as pd iris = datasets.load_iris() iris_X ...
随机推荐
- 从I/O事件到阻塞、非阻塞、poll到epoll的理解过程
I/O事件 I/O事件 非阻塞I/O.在了解非阻塞I/O之前,需要先了解I/O事件 我们知道,内核有缓冲区.假设有两个进程A,B,进程B想读进程A写入的东西(即进程A做写操作,B做读操作).进程A ...
- Batch梯度下降
1.之前讲到随机梯度下降法(SGD),如果每次将batch个样本输入给模型,并更新一次,那么就成了batch梯度下降了. 2.batch梯度下降显然能够提高算法效率,同时相对于一个样本,batch个样 ...
- 渣渣菜鸡的 ElasticSearch 源码解析 —— 环境搭建
关注我 转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/08/25/es-code01/ 软件环境 1.Intellij Idea:2018.2版本 2. ...
- Java命令行实用工具jps和jstat 专题
在Linux或其他UNIX和类UNIX环境下,ps命令想必大家都不陌生,我相信也有不少同学写过 ps aux | grep java | grep -v grep | awk '{print $2}' ...
- 将SpringBoot默认使用的tomcat替换为undertow
随着微服务的兴起,越来越多的互联网应用在选择web容器时使用更加轻量的undertow或者jetty.SpringBoot默认使用的容器是tomcat,如果想换成undertow容器,只需修改pom. ...
- 总结一下WindowListener的用法
记录一下便于自己查看 1.WindowListener java.awt.event 接口 WindowListener public interface WindowListener extends ...
- 图解HTTP总结
一.TCP/IP 的分层管理 二.TCP/IP通信传输流 ARP地址解析协议参考:https://www.cnblogs.com/csguo/p/7527303.html 三.各种协议与HTTP协议的 ...
- 8.html表格相关的标记9.html表格实战《简单的网页布局》
<html> <head> <title>第八课标题表格</title> <meta charset="utf-8"> ...
- PHP 解决同一个IP不同端口号session冲突的问题
在项目的开发阶段,我们经常会遇到几个站点共用同一个IP用不同端口号区分的形式!但是,这样很容易导致一个问题,session冲突丢失!即两个站点具有相同的session变量,清除session的时候即全 ...
- Jenkins系列——使用Dashboard View分类展示作业
1.目标 创建的作业多了,在一个视图中展示多有不便.因此需要使用 Dashboard View 将作业按照后缀进行分类展示. 如下图,可以按照后缀添加CODE,TEST和OTHER视图. 2.环境说明 ...