E. Karen and Supermarket
On the way home, Karen decided to stop by the supermarket to buy some groceries.

She needs to buy a lot of goods, but since she is a student her budget is still quite limited. In fact, she can only spend up to b dollars.
The supermarket sells n goods. The i-th good can be bought for ci dollars. Of course, each good can only be bought once.
Lately, the supermarket has been trying to increase its business. Karen, being a loyal customer, was given n coupons. If Karen purchases the i-th good, she can use the i-th coupon to decrease its price by di. Of course, a coupon cannot be used without buying the corresponding good.
There is, however, a constraint with the coupons. For all i ≥ 2, in order to use the i-th coupon, Karen must also use the xi-th coupon (which may mean using even more coupons to satisfy the requirement for that coupon).
Karen wants to know the following. What is the maximum number of goods she can buy, without exceeding her budget b?
The first line of input contains two integers n and b (1 ≤ n ≤ 5000, 1 ≤ b ≤ 109), the number of goods in the store and the amount of money Karen has, respectively.
The next n lines describe the items. Specifically:
- The i-th line among these starts with two integers, ci and di (1 ≤ di < ci ≤ 109), the price of the i-th good and the discount when using the coupon for the i-th good, respectively.
- If i ≥ 2, this is followed by another integer, xi (1 ≤ xi < i), denoting that the xi-th coupon must also be used before this coupon can be used.
Output a single integer on a line by itself, the number of different goods Karen can buy, without exceeding her budget.
6 16
10 9
10 5 1
12 2 1
20 18 3
10 2 3
2 1 5
4
5 10
3 1
3 1 1
3 1 2
3 1 3
3 1 4
5
In the first test case, Karen can purchase the following 4 items:
- Use the first coupon to buy the first item for 10 - 9 = 1 dollar.
- Use the third coupon to buy the third item for 12 - 2 = 10 dollars.
- Use the fourth coupon to buy the fourth item for 20 - 18 = 2 dollars.
- Buy the sixth item for 2 dollars.
The total cost of these goods is 15, which falls within her budget. Note, for example, that she cannot use the coupon on the sixth item, because then she should have also used the fifth coupon to buy the fifth item, which she did not do here.
In the second test case, Karen has enough money to use all the coupons and purchase everything.
题解:
一道比较经典的树形DP,一开始觉得就是做n次分组背包,但是发现是O(n^3)。
其实统计一下当前根节点所计算过的节点数,保存在size中就优化成O(n^2)了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
int n,m;
struct node
{
int next,to;
} edge[];
int head[],sze=;
void putin(int from,int to)
{
sze++;
edge[sze].next=head[from];
edge[sze].to=to;
head[from]=sze;
}
long long f[][][],size[],a[],b[];
void dfs(int u)
{
int i;
long long j,l;
size[u]=;
f[u][][]=;
f[u][][]=a[u];
f[u][][]=a[u]-b[u];
for(i=head[u]; i!=-; i=edge[i].next)
{
int y=edge[i].to;
dfs(y);
for(j=size[u]; j>=; j--)
{
for(l=; l<=size[y]; l++)
{
f[u][j+l][]=min(f[u][j+l][],f[u][j][]+f[y][l][]);
f[u][j+l][]=min(f[u][j+l][],min(f[u][j][]+f[y][l][],f[u][j][]+f[y][l][]));
}
}
size[u]+=size[y];
}
}
int main()
{
int i,j,fa;
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
scanf("%I64d%I64d",&a[],&b[]);
for(i=; i<=n; i++)
{
scanf("%I64d%I64d%d",&a[i],&b[i],&fa);
putin(fa,i);
}
memset(f,/,sizeof(f));
dfs();
int ans=;
for(i=; i<=n; i++)
{
if(f[][i][]<=m||f[][i][]<=m)ans=i;
}
printf("%d\n",ans);
return ;
}
E. Karen and Supermarket的更多相关文章
- Codeforces 815C Karen and Supermarket 树形dp
Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...
- CF815C Karen and Supermarket
题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...
- CF815C Karen and Supermarket [树形DP]
题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...
- Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP
C. Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some g ...
- codeforces 815C Karen and Supermarket
On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...
- codeforces round #419 E. Karen and Supermarket
On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...
- Codeforces 815 C Karen and Supermarket
On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...
- 【Codeforces 815C】Karen and Supermarket
Codeforces 815 C 考虑树型dp. \(dp[i][0/1][k]\)表示现在在第i个节点, 父亲节点有没有选用优惠, 这个子树中买k个节点所需要花的最小代价. 然后转移的时候枚举i的一 ...
- Codeforces Round #419 (Div. 2) E. Karen and Supermarket(树形dp)
http://codeforces.com/contest/816/problem/E 题意: 去超市买东西,共有m块钱,每件商品有优惠卷可用,前提是xi商品的优惠券被用.问最多能买多少件商品? 思路 ...
随机推荐
- 一:AMQP协议标准简单介绍
一:AMQP协议?--->AMQP 是 Advanced Message Queuing Protocol,即高级消息队列协议.和前面罗列的技术不同,AMQP 是一个标准化的消息中间件协议--- ...
- 【Lintcode】106.Convert Sorted List to Balanced BST
题目: Given a singly linked list where elements are sorted in ascending order, convert it to a height ...
- tyvj1061移动服务——DP
题目:http://www.joyoi.cn/problem/tyvj-1061 DP记录状态为当前任务时不在此任务位置上的两个人的位置(因为一定有一个人在此任务位置上): 不妨设初始位置p[0]=3 ...
- C#线程处理基本知识
章节: 线程与线程处理 讨论多线程的优缺点,并概括了可以创建线程或使用线程池线程的几种情形. 托管线程中的异常 描述不同版本 .NET Framework 的线程中的未经处理的异常的行为,尤其是导致应 ...
- 关于分支和主干Merge时要注意的事项
现在我们同时在主干和分支上进行开发, 当你需要将主干上某一工程代码 Merge到分支上(或者相反)时, 不要用check out 然后全部覆盖的方法, 这样不会关联源上的任何 history, 而且需 ...
- TCP/IP详解卷1 - wireshark抓包分析
TCP/IP详解卷1 - 系列文 TCP/IP详解卷1 - 思维导图(1) TCP/IP详解卷1 - wireshark抓包分析 引言 在初学TCP/IP协议时,会觉得协议是一种很抽象的东西,通过wi ...
- JavaScript-Tool:three.js
ylbtech-JavaScript-Tool:three.js Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它创建各种三维场景,包括了摄影机.光影.材质等各种对象.你可以在它的主页 ...
- TPS与QPS
一.TPS:Transactions Per Second(每秒传输的事物处理个数),即服务器每秒处理的事务数.TPS包括一条消息入和一条消息出,加上一次用户数据库访问.(业务TPS = CAPS × ...
- 2、R-reshape2-melt
1.melt: 短数据转长数据 (1).融合的数据为数组.表以及矩阵,melt的表达式为: melt(data, varnames = names(dimnames(data)), . ...
- Android下如何计算要显示的字符串所占的宽度和高度
Rect bounds = new Rect(); String text = "Hello World"; TextPaint paint; paint = findViewBy ...