从旅行商问题说起——

  给定一个图,n个节点(n<=15),求从a节点出发,经历每个节点仅一次,最后回到a,需要的最短时间。

分析:

  设定状态S代表当前已经走过的城市的集合,显然,S<=(1<<n)-1.

  dp[k][s]——从a走到k,已经经历过的节点集合为s,按照规则走回a所需要的最短时间。

  初始化:dp[k][s]=-1

  

int DP(int K,int S)
{
if (dp[K][S]!=-1)
{
return dp[K][S];
}
if (K==a && S==(1<<n)-1)
{
//已经走回了A,并且所有点都走过一次
return dp[K][S]=0;
}
dp[K][S]=INF;
for (int i=0;i<adj[K].size();i++)
{
//枚举K的下一个点
int v=edges[adj[K][i]].to;
int dist=edges[adj[K][i]].dist;
if (!(S>>(v-1) & 1))//如果这个点还没有走过
{
int val=DP(v,S | (1<<(v-1)));
if (val!=INF)
{
dp[K][S]=min(dp[K][S],val+dist);
}
}
}
return dp[K][S];
}

  

3.4 熟练掌握动态规划——状态压缩DP的更多相关文章

  1. [动态规划]状态压缩DP小结

     1.小技巧 枚举集合S的子集:for(int i = S; i > 0; i=(i-1)&S) 枚举包含S的集合:for(int i = S; i < (1<<n); ...

  2. 浅谈状态压缩DP

    浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...

  3. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  4. Vijos 1002 过河 状态压缩DP

    描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上 ...

  5. 状态压缩·一(状态压缩DP)

    描述 小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市——那座城市即将举行美食节! 但是不幸的是,小Hi和小Ho并没有能够买到很好的火车票—— ...

  6. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  7. 旅行商问题——状态压缩DP

    问题简介 有n个城市,每个城市间均有道路,一个推销员要从某个城市出发,到其余的n-1个城市一次且仅且一次,然后回到再回到出发点.问销售员应如何经过这些城市是他所走的路线最短? 用图论的语言描述就是:给 ...

  8. 状态压缩dp初学__$Corn Fields$

    明天计划上是要刷状压,但是作为现在还不会状压的\(ruoruo\)来说是一件非常苦逼的事情,所以提前学了一下状压\(dp\). 鸣谢\(hmq\ juju\)的友情帮助 状态压缩动态规划 本博文的大体 ...

  9. 【算法】状态压缩DP

    状态压缩DP是什么? 答:利用位运算(位运算比加减乘除都快!)来记录状态,并实现动态规划. 适用于什么问题? 答:数据规模较小:不能使用简单的算法解决. 例题: 题目描述 糖果店的老板一共有M 种口味 ...

随机推荐

  1. python numpy复制array

    numpy快速复制array 前段时间想到一个算法,需要实现array的自我复制,直接上代码,两种复制方式, 整体复制 a=[[10,10,50,50],[10,10,40,50]] np.tile( ...

  2. Hessian知识学习总结(二)——Hessian的helloworld

    一.下载Hessian 可在hessian官网http://hessian.caucho.com/ 或者http://download.csdn.net/detail/wodediqizhang/95 ...

  3. guava笔记

    ​guava是在原先google-collection 的基础上发展过来的,是一个比较优秀的外部开源包,最近项目中使用的比较多,列举一些点.刚刚接触就被guava吸引了... ​    ​这个是gua ...

  4. rs485多主

    因复位时I/O口都输出高电平.如果把I/O口直接与RS-485接口芯片的驱动器使能端DE端相连,会在CPU复位其间DE为高,从而使本节点处于发送状态.如果此时总线上其它节点在发送数据,则此次数据传输将 ...

  5. HDU - 4763 Theme Section (KMP的next数组的应用)

    给定一个字符串,求出一个前缀A,使得字符串的构成可以表示成ABABA的形式(B可以为空串). 输出这个前缀的最大长度. KMP算法Next数组的使用. 枚举中间的每个位置,可以根据Next数组求出这个 ...

  6. Linux学习-登录档的轮替(logrotate)

    rsyslogd 利用的是 daemon 的方式来启动的, 当有需求的时候立刻就会被执行的,但是 logrotate 却是在规定的时间到了之后才来进行登录档的轮 替, 所以这个 logrotate 程 ...

  7. git 强制回到以前版本

    git reset dfd3e36a641340a0b86f811df869c4375fabeff2 --hard

  8. 程序员必需知道的Mac OS使用技巧

    macos sierra正式版发布了,于是我把我沉寂了一年没有用过了的macbook拿出来玩玩,顺便把一些常用技巧mark. 1.apple store下载软件无响应(经常出现的问题) 解决方法:更改 ...

  9. Spring @注解详解(转)

    1.@controller 控制器(注入服务) 2.@service 服务(注入dao) 3.@repository dao(实现dao访问) 4.@component (把普通pojo实例化到spr ...

  10. Android中如何截取字符串中某个字符之前或之后的字符串

    代码改变世界 Android中如何截取字符串中某个字符之前或之后的字符串 //截取#之前的字符串 String str = "sdfs#d"; str.substring(0, s ...