从旅行商问题说起——

  给定一个图,n个节点(n<=15),求从a节点出发,经历每个节点仅一次,最后回到a,需要的最短时间。

分析:

  设定状态S代表当前已经走过的城市的集合,显然,S<=(1<<n)-1.

  dp[k][s]——从a走到k,已经经历过的节点集合为s,按照规则走回a所需要的最短时间。

  初始化:dp[k][s]=-1

  

int DP(int K,int S)
{
if (dp[K][S]!=-1)
{
return dp[K][S];
}
if (K==a && S==(1<<n)-1)
{
//已经走回了A,并且所有点都走过一次
return dp[K][S]=0;
}
dp[K][S]=INF;
for (int i=0;i<adj[K].size();i++)
{
//枚举K的下一个点
int v=edges[adj[K][i]].to;
int dist=edges[adj[K][i]].dist;
if (!(S>>(v-1) & 1))//如果这个点还没有走过
{
int val=DP(v,S | (1<<(v-1)));
if (val!=INF)
{
dp[K][S]=min(dp[K][S],val+dist);
}
}
}
return dp[K][S];
}

  

3.4 熟练掌握动态规划——状态压缩DP的更多相关文章

  1. [动态规划]状态压缩DP小结

     1.小技巧 枚举集合S的子集:for(int i = S; i > 0; i=(i-1)&S) 枚举包含S的集合:for(int i = S; i < (1<<n); ...

  2. 浅谈状态压缩DP

    浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...

  3. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  4. Vijos 1002 过河 状态压缩DP

    描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上 ...

  5. 状态压缩·一(状态压缩DP)

    描述 小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市——那座城市即将举行美食节! 但是不幸的是,小Hi和小Ho并没有能够买到很好的火车票—— ...

  6. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  7. 旅行商问题——状态压缩DP

    问题简介 有n个城市,每个城市间均有道路,一个推销员要从某个城市出发,到其余的n-1个城市一次且仅且一次,然后回到再回到出发点.问销售员应如何经过这些城市是他所走的路线最短? 用图论的语言描述就是:给 ...

  8. 状态压缩dp初学__$Corn Fields$

    明天计划上是要刷状压,但是作为现在还不会状压的\(ruoruo\)来说是一件非常苦逼的事情,所以提前学了一下状压\(dp\). 鸣谢\(hmq\ juju\)的友情帮助 状态压缩动态规划 本博文的大体 ...

  9. 【算法】状态压缩DP

    状态压缩DP是什么? 答:利用位运算(位运算比加减乘除都快!)来记录状态,并实现动态规划. 适用于什么问题? 答:数据规模较小:不能使用简单的算法解决. 例题: 题目描述 糖果店的老板一共有M 种口味 ...

随机推荐

  1. nrf51822微信开发2:[转]airkiss/airsync介绍

    "微信蓝牙"专题共分为8部分 1.airkiss/airsync介绍 2.eclipes的j2ee软件使用教程 3.微信公众号使用Dome(airkiss/airsync) 4.新 ...

  2. Artwork Gym - 101550A 离线并查集

    题目:题目链接 思路:每个空白区域当作一个并查集,因为正着使用并查集分割的话dfs会爆栈,判断过于复杂也会导致超时,我们采用离线反向操作,先全部涂好,然后把黑格子逐步涂白,我们把每个空白区域当作一个并 ...

  3. poj 2531 分权问题 dfs算法

    题意:一个集合(矩阵) m[i][j]=m[j][i]权值,分成两个集合,使其权值最大.注:在同一个集合中权值只能算一个. 思路:dfs 假设都在集合0 遍历 id 的时候拿到集合1 如果与 id 相 ...

  4. MIP启发式算法:Variable fixing heuristic

    *本文主要记录及分享学习到的知识,算不上原创 *参考文章见链接. 本文简单介绍一下Variable fixing heuristic,这个算法同样以local search为核心框架,它的特点在于定义 ...

  5. Android Studio中不能显示svn的上传下载两个图标同时version control为灰,不可点击

    最近在接触Android Studio,涉及到svn的配置,因为是先安装的svn,后安装的Android Studio,后边同事告诉我, Android Studio 的SVN安装与其他IDE有很大差 ...

  6. Python虚拟机中的一般表达式(一)

    在Python虚拟机框架这一章中,我们通过PyEval_EvalFrameEx看到了Python虚拟机的整体框架.而这章开始,我们将了解Python虚拟机是如何完成对Python的一般表达式的执行,这 ...

  7. 如何理解redo和undo的作用

    目录 如何理解redo和undo的作用 redo undo UNDO和REDO的区别 如何理解redo和undo的作用 redo 重做日志(redo)包含所有数据产生的历史改变记录,是oracle在线 ...

  8. 命令行下修改postgres密码

    1. 修改PostgreSQL数据库默认用户postgres的密码 PostgreSQL数据库创建一个postgres用户作为数据库的管理员,密码随机,所以需要修改密码,方式如下: 步骤一:登录Pos ...

  9. linux dd命令创建一定大小的文件

    http://www.cnblogs.com/jikexianfeng/p/6103500.html

  10. AtCoder Grand Contest 020

    A - Move and Win Time limit : 1sec / Memory limit : 512MB Score : 300 points Problem Statement A gam ...