Baum Welch估计HMM参数实例
Baum Welch估计HMM参数实例
下面的例子来自于《What is the expectation maximization algorithm?》
题面是:假设你有两枚硬币A与B,这两枚硬币抛出正面的概率分别为\(\theta_A\)和\(\theta_B\)。下面给出一些观测的结果,需要你去估计这两个参数\(\theta_A\)与\(\theta_B\)
- 假设给的数据是完整的数据,也就是样本数据告诉了你,此样本来自硬币A还是硬币B。针对与完整的数据,直接使用极大似然估计即可。具体的计算如下图所示:
我们可以看到,整个估计的过程就是分别统计来自A的正反面与来自B的正反面,然后内部进行估计(本质上是极大似然)。
- 如果给的数据是不完整的数据呢,比如我们不知道当前观测序列是来自硬币A 还是硬币B,这个时候,就需要使用EM算法。
这里解释下求解的过程,首先是我们假设初始的\(\theta_A\)与\(\theta_B\)的值分别为 \(0.6\) 与 \(0.5\). 我们必须要知道当前样本来自A的概率与来自B的概率,然后才能得出来自A的正面期望数和来自B的正面期望数。估计很多人会被卡在这里,我也是。因为不知道图上的\(0.45\)等值是怎么得出来的。 实际上很简单,既然我们有了观测序列,那么我们分别计算一下来自A的似然值,然后再计算一下来自B的似然值。根据似然的大小来决定概率,具体的坐下如下
\[L_A = 0.6^5\times (1 - 0.6)^5 = 0.0007962624\]
然后再计算下来自B的似然值
\[L_B = 0.5^5\times (1 - 0.5)^5 = 0.0009765625\]
然后计算下这两个的比值,来计算来自A的概率
\[P(A) = \dfrac{L_A}{L_A + L_B} = 0.45\]
那么\[P(B) = 1 - P(A) = 0.55\]
然后采用上面求MLE的方法估计参数\(\theta_A\)和参数\(\theta_B\).
重复上述过程几次到收敛即可。
Baum Welch估计HMM参数实例的更多相关文章
- 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包)
目录 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包) 导论 rugarch 简介 指定一个 \(\text{GARCH}(1, 1)\) 模型 模拟一个 GARCH 过程 拟合 ...
- 在 R 中估计 GARCH 参数存在的问题(续)
目录 在 R 中估计 GARCH 参数存在的问题(续) rugarch 包的使用 简单实验 rugarch 参数估计的行为 极端大样本 结论 在 R 中估计 GARCH 参数存在的问题(续) 本文承接 ...
- 在 R 中估计 GARCH 参数存在的问题
目录 在 R 中估计 GARCH 参数存在的问题 GARCH 模型基础 估计 GARCH 参数 fGarch 参数估计的行为 结论 译后记 在 R 中估计 GARCH 参数存在的问题 本文翻译自< ...
- Baum–Welch algorithm
Baum–Welch algorithm 世界上只有一个巴菲特,也只有一家文艺复兴科技公司_搜狐财经_搜狐网 http://www.sohu.com/a/157018893_649112
- 读取xml文件中的配置参数实例_java - JAVA
文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 paras.xml文件 <?xml version="1.0" encoding=" ...
- 鲍姆-韦尔奇算法求解HMM参数
1. HMM模型参数求解概述 HMM模型参数求解根据已知的条件可以分为两种情况. 第一种情况较为简单,就是我们已知DD个长度为TT的观测序列和对应的隐藏状态序列,即{(O1,I1),(O2,I2),. ...
- HMM分词实例
class HMM(object): def __init__(self): import os # 主要是用于存取算法中间结果,不用每次都训练模型 self.model_file = 'model/ ...
- flask-sqlalchemy中 backref lazy的参数实例解释和选择
官方文档:http://docs.sqlalchemy.org/en/rel_1_0/orm/basic_relationships.html#relationship-patterns 最近在学习到 ...
随机推荐
- freopen()函数
freopen函数通过实现标准I/O重定向功能来访问文件,而fopen函数则通过文件I/O来访问文件. freopen函数在算法竞赛中常被使用.在算法竞赛中,参赛者的数据一般需要多次输入,而为避免重复 ...
- Leet-code144. Binary Tree Preorder Traversal
这是一道将二叉树先序遍历,题目不难. 首先采用深搜递归 /** * Definition for a binary tree node. * public class TreeNode { * int ...
- 如何清除SharePoint Server 配置缓存
日常运维中您可能需要清除SharePoint 2010/2013/2016中的过期配置缓存.例如,有时计时器作业往往会卡住,并在这种情况下清除缓存.您可以手动清除SharePoint配置缓存或者使用P ...
- acdream 小晴天老师系列——我有一个数列! (ST算法)
小晴天老师系列——我有一个数列! Time Limit: 20000/10000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)S ...
- 【Python图像特征的音乐序列生成】关于图像特征的描述词
查阅了很久的资料,决定依据Yoshida的<Image retrieval system using impression words>这篇论文里的词语来定义. Yoshida 等的 Ar ...
- MovieReview—Wile Hunter(荒野猎人)
Faith is Power Faith is power, this sentence is not wrong. Find your own beliefs, and strug ...
- GIT分布式版本控制器的前后今生
Git的入门与安装 GIT基础操作 GIT的分支应用 GITLAB应用 gitlab与pycharm应用 GITHUB使用
- Sequence II
6990: Sequence II 时间限制: 3 Sec 内存限制: 128 MB提交: 206 解决: 23[提交][状态][讨论版][命题人:admin] 题目描述 We define an ...
- java基础—配置环境变量
前言 学习java的第一步就要搭建java的学习环境,首先是要安装JDK,JDK安装好之后,还需要在电脑上配置"JAVA_HOME”."path”."classpath& ...
- 【上下界网络流 费用流】bzoj2055: 80人环游世界
EK费用流居然写错了…… Description 想必大家都看过成龙大哥的<80天环游世界>,里面的紧张刺激的打斗场面一定给你留下了深刻的印象.现在就有这么 一个80人的团 ...