c++ opencv L-M源码

http://www.shenlejun.cn/article/show.asp?id=97



什么是最优化,可分为几大类?

答:Levenberg-Marquardt算法是最优化算法中的一种。最优化是寻找使得函数值最小的参数向量。它的应用领域非常广泛,如:经济学、管理优化、网络分析、最优设计、机械或电子设计等等。
根据求导数的方法,可分为2大类。第一类,若f具有解析函数形式,知道x后求导数速度快。第二类,使用数值差分来求导数。
根据 使用模型不同,分为非约束最优化、约束最优化、最小二乘最优化。
什么是Levenberg-Marquardt算法?
它是使用最广泛的非线性最小二乘算法,中文为列文伯格-马夸尔特法。它是利用梯度求最大(小)值的算法,形象的说,属于“爬山”法的一种。它同时具有梯度法和牛顿法的优点。当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。在作者的科研项目中曾经使用过多次。图1显示了算法从起点,根据函数梯度信息,不断爬升直到最高点(最大值)的迭代过程。共进行了12步。(备注:图1中绿色线条为迭代过程)。

图1 LM算法迭代过程形象描述

http://www2.imm.dtu.dk/pubdb/public/publications.php? year=&pubtype=7&pubsubtype=&section=1&cmd=full_view&lastndays=&order=author

或者直接下载pdf原文:
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
          
 在LM算法中,每次迭代是寻找一个合适的阻尼因子λ,当λ很小时,算法就变成了GAuss-Newton法的最优步长计算式,λ很大时,蜕化为梯度下降法的最优步长计算式。
Levenberg-Marquardt快速入门教程(荐)
例子程序(MATLAB源程序)
本程序不到100行,实现了求雅克比矩阵的解析解,Levenberg-Marquardt最优化迭代,演示了如何求解拟合问题。采用萧树铁主编的《数学试验》(第二版)(高等教育出版社)中p190例2(血药浓度)来演示。在MATLAB中可直接运行得到最优解。
 
*************************************************************************
% 计算函数f的雅克比矩阵,是解析式
syms a b y x real;
f=a*exp(-b*x);
Jsym=jacobian(f,[a b])
% 拟合用数据。参见《数学试验》,p190,例2
data_1=[0.25 0.5 1 1.5 2 3 4 6 8];
obs_1=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01];
% 2. LM算法
% 初始猜测s
a0=10; b0=0.5;
y_init = a0*exp(-b0*data_1);
% 数据个数
Ndata=length(obs_1);
% 参数维数
Nparams=2;
% 迭代最大次数
n_iters=50;
% LM算法的阻尼系数初值
lamda=0.01;
% step1: 变量赋值
updateJ=1;
a_est=a0;
b_est=b0;
% step2: 迭代
for it=1:n_iters
    if updateJ==1
        % 根据当前估计值,计算雅克比矩阵
        J=zeros(Ndata,Nparams);
        for i=1:length(data_1)
            J(i,:)=[exp(-b_est*data_1(i)) -a_est*data_1(i)*exp(-b_est*data_1(i))];
        end
        % 根据当前参数,得到函数值
        y_est = a_est*exp(-b_est*data_1);
        % 计算误差
        d=obs_1-y_est;
        % 计算(拟)海塞矩阵
        H=J'*J;
        % 若是第一次迭代,计算误差
        if it==1
            e=dot(d,d);
        end
    end
    % 根据阻尼系数lamda混合得到H矩阵
    H_lm=H+(lamda*eye(Nparams,Nparams));
    % 计算步长dp,并根据步长计算新的可能的\参数估计值
    dp=inv(H_lm)*(J'*d(:));
    g = J'*d(:);
    a_lm=a_est+dp(1);
    b_lm=b_est+dp(2);
    % 计算新的可能估计值对应的y和计算残差e
    y_est_lm = a_lm*exp(-b_lm*data_1);
    d_lm=obs_1-y_est_lm;
    e_lm=dot(d_lm,d_lm);
    % 根据误差,决定如何更新参数和阻尼系数
    if e_lm        lamda=lamda/10;
        a_est=a_lm;
        b_est=b_lm;
        e=e_lm;
        disp(e);
        updateJ=1;
    else
        updateJ=0;
        lamda=lamda*10;
    end
end
%显示优化的结果
a_est
b_est
************************************************************
转自:http://www.shenlejun.cn/my/article/show.asp?id=17&page=2

图1中,算法从山脚开始不断迭代。可以看到,它的寻优速度是比较快的,在山腰部分直接利用梯度大幅度提升(参见后文例子程序中lamda较小时),快到山顶时经过几次尝试(lamda较大时),最后达到顶峰(最大值点),算法终止。

如何快速学习LM算法?

学 习该算法的主要困难是入门难。 要么国内中文教材太艰涩难懂,要么太抽象例子太少。目前,我看到的最好的英文入门教程是K. Madsen等人的《Methods for non-linear least squares problems》本来想把原文翻译一下,贴到这里。请让我偷个懒吧。能找到这里的读者,应该都是E文好手,我翻译得不清不楚,反而事倍功半了。

可在 下面的链接中找到

LM算法是介于牛顿法与梯度下降法之间的一种非线性优化方法,对于过参数化问题不敏感,能有效处理冗余参数问题,使代价函数陷入局部极小值的机会大大减小,这些特性使得LM算法在计算机视觉等领域得到广泛应用。

算法流程

参考文献:

[1]. 张鸿燕, 狄征. Levenberg-Marquardt算法的一种新解释. 计算机工程与应用,2009,45(19),5-8.

from: http://heleiying.blog.163.com/blog/static/3110429201081693815164/

Levenberg-Marquardt的更多相关文章

  1. matlab实现高斯牛顿法、Levenberg–Marquardt方法

    高斯牛顿法: function [ x_ans ] = GaussNewton( xi, yi, ri) % input : x = the x vector of 3 points % y = th ...

  2. Levenberg–Marquardt algorithm

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGFubWVuZ3dlbg==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  3. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  4. OpenCV Template Matching Subpixel Accuracy

    OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reac ...

  5. [SLAM] 01 "Simultaneous Localization and Mapping" basic knowledge

    发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发信站: 水木社区 (Thu Jun 16 19:18:24 2016), 站内 ...

  6. 关于automatic_Panoramic_Image_Stitching_using_Invariant_features 的阅读笔记(2)

    接上一篇: http://www.cnblogs.com/letben/p/5446074.html#3538201 捆绑调整 (好开心有同学一起来看看这些问题,要不然就是我自己的话,我应该也不会看的 ...

  7. Kintinuous 相关论文 Volume Fusion 详解

    近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...

  8. IMU 标定 | 工业界和学术界有什么不同?

    点击"计算机视觉life"关注,置顶更快接收消息! 由于格式问题最好在公众号上观看<IMU 标定-工业界和学术界有什么不同?> 本文主要介绍了IMU基本结构原理和误差的 ...

  9. Tikhonov regularization 吉洪诺夫 正则化

    这个知识点很重要,但是,我不懂. 第一个问题:为什么要做正则化? In mathematics, statistics, and computer science, particularly in t ...

  10. Machine learning | 机器学习中的范数正则化

    目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...

随机推荐

  1. 《UNIX 网络编程 第二版》编译环境的搭建( 运行本专栏代码必读 )

    第一步:搭建基本的编译环境 安装gcc, g++, bulid-essential等编译软件 第二步:下载本书示例源码包 可在这里下载http://ishare.iask.sina.com.cn/f/ ...

  2. sql无限级树型查询

    表结构如下: 表数据如下: 一提到无限级,很容易想到递归,使用sql 的CET语法如下 with menu(Id,Name,ParentId,Level) as ( select Id,Name,Pa ...

  3. [Usaco2005 Dec]Cleaning Shifts 清理牛棚

    题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now ...

  4. 【C++基础学习】类型声明

    1.初始化 在C++中,初始化与赋值操作是完全不同的两个操作.初始化不是赋值,初始化的含义是创建变量时赋予其一个初始值,而赋值的含义是把对象的当前值擦除,而以一个新值来代替. 初始化的方式有: 1 i ...

  5. codeforces 570D.Tree Requests

    [题目大意]: 给定一棵树,树的每个节点对应一个小写字母字符,有m个询问,每次询问以vi为根节点的子树中,深度为hi的所有节点对应的字符能否组成一个回文串: [题目分析]: 先画个图,可看出每次询问的 ...

  6. Codeforces Round #374 (Div. 2) C. Journey —— DP

    题目链接:http://codeforces.com/contest/721/problem/C C. Journey time limit per test 3 seconds memory lim ...

  7. RobotFramework教程使用笔记——初识RobotFramework

    1.创建项目 File->New Project 创建测试项目 Type选择Directory 右键项目创建测试套件,也可以理解为创建不同测试逻辑或者是测试业务 右键测试套件创建case 注:如 ...

  8. 配置Nginx四层负载均衡

    nginx 支持TCP转发和负载均衡的支持 实现下面的架构: 看配置: #user nobody; worker_processes 1; #error_log logs/error.log; #er ...

  9. 关于lock锁

    在 jdk1.5 之后,并发包中新增了 Lock 接口(以及相关实现类)用来实现锁功能,Lock 接口提供了与 synchronized 关键字类似的同步功能,但需要在使用时手动获取锁和释放锁. lo ...

  10. mysql初始化命令及其他命令

    这个问题纠结了我两年: 为了配置my.cnf中 undo的 参数生效,以及生成undo文件,使用一下命令 /usr/bin/mysql_install_db   --defaults-file=/et ...