【题解】[APIO2009]会议中心
【题解】[P3626 APIO2009]会议中心
真的是一道好题!!!刷新了我对倍增浅显的认识。
此题若没有第二份输出一个字典序的方案,就是一道\(sort+\)贪心,但是第二问使得我们要用另外的办法。
考虑到题目的性质,贪心地想,假如我们已经选择了区间\(i\),我们就可以盖将自其变者而观之,则天地曾不能以一瞬;自其不变者而观之,则物与我皆无尽也,而又何羡乎!确定下一个是谁,虽世殊事异,所以兴怀,其致一也,而且不用关心其他的情况,也就是说,下一个选择是确定的!
考虑暴力存下来我是下\(i\)个是谁,空间不够,怎么办?考虑到,我附庸的附庸也是我的附庸下一个的下一个是我的下两个,可以倍增啊!
\(st(i,j)\)表示选择\(i\)后,下\(2^j\)选择是谁。可以先预处理\(k=0\),然后直接倍增的套路把数组处理出来。
那么如何确定答案呢?
我们对于线段建立一个拟阵\((L,E)\),易知对于答案线段集合\(e \in E\)是显然满足遗传性和增广性的,那只还在集族\(E\)中,仍然是独立集,就一定是这个拟阵中极大独立集的一个。那么我们就可以\(O(nlogn+nf(x))\)地确定极大独立集了。
哈哈哈哈哈哈
就是贪心,没有别的。
我们搞个这样的操作:假若加入我这个答案,发现被我影响的所有区间内的总答案没有发生变化,那么我们就加吧。然后按照加入的时间顺序加,就直接可以输出了。
开眼了!
暴露了一个问题,我平衡树一个都不会,必须学一个QAQ
#include<bits/stdc++.h>
using namespace std;typedef long long ll;
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
TMP inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
TMP inline ccf Max(ccf a,ccf b){return a<b?b:a;}
TMP inline ccf Min(ccf a,ccf b){return a<b?a:b;}
TMP inline ccf Max(ccf a,ccf b,ccf c){return Max(a,Max(b,c));}
TMP inline ccf Min(ccf a,ccf b,ccf c){return Min(a,Min(b,c));}
TMP inline ccf READ(ccf* _arr,int _n){RP(t,1,_n)_arr[t]=qr((ccf)1);}
//----------------------template&IO---------------------------
const int maxn=2e5+15;
struct DATA{
int l,r;
inline bool operator <(DATA x)const{return r==x.r?l>x.l:r<x.r;}
inline DATA scan(){l=qr(1),r=qr(1);return *this;}
}data[maxn],usd[maxn],orzpsj[maxn];
set < DATA > qaq;
int L[maxn],R[maxn];
int st[maxn][33];
int n,cnt;
const int inf=0x3f3f3f3f;
inline int wk(int l,int r){
register int ret=0,now=lower_bound(L+1,L+1+cnt,l)-L;
if(R[now]>r||now>cnt) return 0;
DRP(t,31,0)if(st[now][t]&&R[st[now][t]]<=r)ret+=1<<t,now=st[now][t];return ret+1;
}
inline DATA mk(int l,int r){
DATA ret;
ret.l=l;ret.r=r;
return ret;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("interval10.in","r",stdin);
freopen("interval.out","w",stdout);
#endif
n=qr(1);
RP(t,1,n) orzpsj[t]=data[t].scan();
sort(data+1,data+n+1);
RP(t,1,n) if(!cnt||data[t].l>usd[cnt].l) usd[++cnt]=data[t];
RP(t,1,cnt) L[t]=usd[t].l,R[t]=usd[t].r;
for(register int t=1,j=1;t<=cnt;++t){
while(j<=cnt&&usd[j].l<=usd[t].r) ++j;
if(j<=cnt) st[t][0]=j;
}
RP(t,1,31)
RP(i,1,cnt)
st[i][t]=st[st[i][t-1]][t-1];
int ans=wk(-inf,inf);
cout<<ans<<endl;
qaq.insert(mk(inf,inf));
qaq.insert(mk(-inf,-inf));
set< DATA >::iterator x,y;
int l1,r1,l2,r2;
RP(t,1,n) data[t]=orzpsj[t];
RP(t,1,n){
y=x=qaq.lower_bound(data[t]);y--;
l1=y->r,r1=data[t].l,l2=data[t].r,r2=x->l;
if(l1>=r1||l2>=r2) continue;
if(wk(l1+1,r2-1)==wk(l1+1,r1-1)+wk(l2+1,r2-1+1)+1){
cout<<t<<' ';qaq.insert(data[t]);
}
}
return 0;
}
【题解】[APIO2009]会议中心的更多相关文章
- [APIO2009]会议中心(贪心)
P3626 [APIO2009]会议中心 题目描述 Siruseri 政府建造了一座新的会议中心.许多公司对租借会议中心的会堂很 感兴趣,他们希望能够在里面举行会议. 对于一个客户而言,仅当在开会时能 ...
- [APIO2009]会议中心
[APIO2009]会议中心 题目大意: 原网址与样例戳我! 给定n个区间,询问以下问题: 1.最多能够选择多少个不相交的区间? 2.在第一问的基础上,输出字典序最小的方案. 数据范围:\(n \le ...
- P3626 [APIO2009]会议中心
传送门 好迷的思路-- 首先,如果只有第一问就是个贪心,排个序就行了 对于第二问,我们考虑这样的一种构造方式,每一次都判断加入一个区间是否会使答案变差,如果不会的话就将他加入别问我正确性我不会证 我们 ...
- BZOJ.1178.[APIO2009]会议中心(贪心 倍增)
BZOJ 洛谷 \(Description\) 给定\(n\)个区间\([L_i,R_i]\),要选出尽量多的区间,并满足它们互不相交.求最多能选出多少个的区间以及字典序最小的方案. \(n\leq2 ...
- BZOJ1178 APIO2009 会议中心 贪心、倍增
传送门 只有第一问就比较水了 每一次贪心地选择当前可以选择的所有线段中右端点最短的,排序之后扫一遍即可. 考虑第二问.按照编号从小到大考虑每一条线段是否能够被加入.假设当前选了一个区间集合\(T\), ...
- BZOJ1178或洛谷3626 [APIO2009]会议中心
BZOJ原题链接 洛谷原题链接 第一个问题是经典的最多不相交区间问题,用贪心即可解决. 主要问题是第二个,求最小字典序的方案. 我们可以尝试从\(1\to n\)扫一遍所有区间,按顺序对每一个不会使答 ...
- Luogu 3626 [APIO2009]会议中心
很优美的解法. 推荐大佬博客 如果没有保证字典序最小这一个要求,这题就是一个水题了,但是要保证字典序最小,然后我就不会了…… 如果一条线段能放入一个区间$[l', r']$并且不影响最优答案,那么对于 ...
- [Luogu P3626] [APIO2009] 会议中心
题面 传送门:https://www.luogu.org/problemnew/show/P3626 Solution 如果题目只要求求出第一问,那这题显然就是大水题. 但是加上第二问的话...... ...
- 【BZOJ】【1178】【APIO2009】convention会议中心
贪心 如果不考虑字典序的话,直接按右端点排序,能选就选,就可以算出ans…… 但是要算一个字典序最小的解就比较蛋疼了= = Orz了zyf的题解 就是按字典序从小到大依次枚举,在不改变答案的情况下,能 ...
随机推荐
- servlet源码查看
1,下载源码,点击此处可下载 2,创建web项目 我这里以jdbc这个web项目为例讲解 在javaee libraries中有个javaee.jar包,选中它-->右击-->Proper ...
- Topshelf+Quartz.net+Dapper+Npoi(一)
背景 前段时间公司有个需求(每天给业务导出一批数据,以excel的形式通过邮件发送给他).A说:直接写个服务,判断等于某个时间点,执行一下sql语句,生成excel,写个EmaiHelper发送给他不 ...
- DataSnap——利用TParams进行多表事务更新
DataSnap——利用TParams进行多表事务更新 服务端: function TSVRDM.multUpdatesByPar(UpdateParam: TParams; out ErrMsg: ...
- dedecms让channelartlist标签支持currentstyle属性方
把dedecms中用channelartlist当导航的站很普遍,但是有的站需要用到当前页中导航样,就是随着不同的页面,导航样式也随着变化. 首先打开include\taglib\channelart ...
- Android开发之布局文件里实现OnClick事件关联处理方法
一般监听OnClickListener事件,我们都是通过Button button = (Button)findViewById(....); button.setOClickLisener....这 ...
- Solidworks如何绘制螺纹
1 随便画一个圆柱 2 在原来的地方画一个一摸一样的圆(草图2) 3 在特征选项卡中点击曲线-螺旋线/涡状线 4 设置螺距和圈数,画螺旋线 5 建立一个基准面,第一参考是点,第二参考是 ...
- HDU 4927 大数
题意非常easy: 对于长度为n的数.做n-1遍.生成的新数列: b1=a2-a1 b2=a3-a2 b3=a4-a3 c1=b2-b1 c2=b3-b2 ans=c2-c1 最后推出公式: ...
- HDU 4355 Party All the Time(三分|二分)
题意:n个人,都要去參加活动,每一个人都有所在位置xi和Wi,每一个人没走S km,就会产生S^3*Wi的"不舒适度",求在何位置举办活动才干使全部人的"不舒适度&quo ...
- c# 访问Mysql
下载Connector/Net驱动程序,并安装. 通过MySQLConnection对象来连接数据库,连接MySQL的程序的最前面需要引用MySql.Data.MySqlClient. using M ...
- java equals与==区别
java中的数据类型,可分为两类: 1.基本数据类型,也称原始数据类型.byte,short,char,int,long,float,double,boolean 他们之间的比较,应用双等号(== ...