6498: Xor Sum

时间限制: 1 Sec  内存限制: 128 MB
提交: 27  解决: 13
[提交][状态][讨论版][命题人:admin]

题目描述

You are given a positive integer N. Find the number of the pairs of integers u and v (0≤u,v≤N) such that there exist two non-negative integers a and b satisfying a xor b=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 109+7.

Constraints
1≤N≤1018

输入

The input is given from Standard Input in the following format:
N

输出

Print the number of the possible pairs of integers u and v, modulo 109+7.

样例输入

3

样例输出

5

提示

The five possible pairs of u and v are:
u=0,v=0 (Let a=0,b=0, then 0 xor 0=0, 0+0=0.)
u=0,v=2 (Let a=1,b=1, then 1 xor 1=0, 1+1=2.)
u=1,v=1 (Let a=1,b=0, then 1 xor 0=1, 1+0=1.)
u=2,v=2 (Let a=2,b=0, then 2 xor 0=2, 2+0=2.)
u=3,v=3 (Let a=3,b=0, then 3 xor 0=3, 3+0=3.)

按位考虑,因为a xor b = <=a+b,实际上只需要考虑a+b<=n,
但是要求a的每一位不大于b的每一位(关键点,否则u,v会有重复),那么对于两组不同的(a1,b1)和(a2,b2),
如果a1 xor b1等于a2 xor b2,则异或值均为零,
这表明每种(a,b)的取法都会导致不同的(a xor b,a+b)。
 
解法:记dp[i]为满足a+b<=i的(a,b)对的个数,枚举a和b的最低位,记a=2a1+a2,b=2b1+b2,其中a2,b2=0,1且a2<=b2,
那么有a1+b1<=(n-a2-b2)/2,因为a2+b2只能是0,1,2,则有dp[i]=dp[i/2]+dp[(i-1)/2]+dp[(i-2)/2],
那么对于dp[n],可以分析出需要计算的状态数是O((logn)^2)的。
此处对map的用法要熟悉,否则在时间和空间上都会爆!
AC代码:

#include<bits/stdc++.h>
using namespace std;
const long long mod=1e9+7;
map<long long ,long long>dp;
long long solve(long long x)
{
if(dp[x])
{
return dp[x];
}
else
{
return dp[x]=((solve(x/2)+solve((x-1)/2)+solve((x-2)/2)))%mod;
}
}
int main()
{
dp[0]=1;
dp[1]=2;
long long n;
cin>>n;
cout<<solve(n)<<endl;
return 0;
}

Xor Sum的更多相关文章

  1. HDU 4825 Xor Sum(经典01字典树+贪心)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  2. 字典树-百度之星-Xor Sum

    Xor Sum Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheu ...

  3. HDU 4825 Xor Sum 字典树+位运算

    点击打开链接 Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) ...

  4. 2014百度之星第三题Xor Sum(字典树+异或运算)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  5. Xor Sum 01字典树 hdu4825

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)Total S ...

  6. hdu 4825 Xor Sum (01 Trie)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 题面: Xor Sum Time Limit: 2000/1000 MS (Java/Others) ...

  7. HDU--4825 Xor Sum (字典树)

    题目链接:HDU--4825 Xor Sum mmp sb字典树因为数组开的不够大一直wa 不是报的 re!!! 找了一下午bug 草 把每个数转化成二进制存字典树里面 然后尽量取与x这个位置上不相同 ...

  8. hdu 4825 Xor Sum trie树

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Proble ...

  9. hdu 4825 Xor Sum(trie+贪心)

    hdu 4825 Xor Sum(trie+贪心) 刚刚补了前天的CF的D题再做这题感觉轻松了许多.简直一个模子啊...跑树上异或x最大值.贪心地让某位的值与x对应位的值不同即可. #include ...

  10. UVALive4682 XOR Sum

    UVALive4682 XOR Sum 题意 给定一个数组, 求连续子序列中异或值最大的值. 题解 假设答案区间为 [L, R], 则答案为 XOR[L, R], 可以将区间分解为 XOR[L,R] ...

随机推荐

  1. 实现prim算法

    如下找出该图的最小生成树 prim算法是求解该类问题的一种经典算法 Prim算法的基本思路:将图中的所有的顶点分为两类:树顶点(已经被选入生成树的顶点)和非树顶点(还未被选入生成树的顶点).首先选择任 ...

  2. 散列表(Hash table)及其构造

    散列表(Hash table) 散列表,是根据关键码值(Key value)而直接进行访问的数据结构.它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列函数,存放记录 ...

  3. linux文件重命名

    rename 命令用字符串替换的方式批量改变文件名. 语法 rename(参数) 参数 原字符串:将文件名需要替换的字符串: 目标字符串:将文件名中含有的原字符替换成目标字符串: 文件:指定要改变文件 ...

  4. h5模型文件转换成pb模型文件

      本文主要记录Keras训练得到的.h5模型文件转换成TensorFlow的.pb文件 #*-coding:utf-8-* """ 将keras的.h5的模型文件,转换 ...

  5. AGC001 F - Wide Swap【线段树+堆+拓扑排序】

    给出的模型很难搞,所以转换一下,记p[i]为i这个数的位置,然后相邻两个p值差>k的能交换,发现使原问题字典序最小也需要使这里的字典序最小 注意到p值差<=k的前后顺序一定不変,那么可以n ...

  6. 洛谷P3572 [POI2014]PTA-Little Bird

    P3572 [POI2014]PTA-Little Bird 题目描述 In the Byteotian Line Forest there are nn trees in a row. On top ...

  7. django后台管理系统(admin)的简单使用

    目录 django后台管理系统的使用 检查配置文件 检查根urls.py文件 启动项目,浏览器输入ip端口/admin 如: 127.0.0.1/8000/admin 回车 注册后台管理系统超级管理 ...

  8. PAT甲级——1110 Complete Binary Tree (完全二叉树)

    此文章同步发布在CSDN上:https://blog.csdn.net/weixin_44385565/article/details/90317830   1110 Complete Binary ...

  9. window.addeventlistener使用方法

    http://www.jb51.net/article/49858.htm .................................................... (要注意的是div ...

  10. 线程池(3)Executors.newCachedThreadPool

    例子: ExecutorService es = Executors.newCachedThreadPool(); try { for (int i = 0; i < 20; i++) { Ru ...