题意

给定$n$个点$m$条边有向图及边权$w$,第$i$次经过一条边边权为$w-1-2.-..-i$,$w\ge 0$给定起点$s$问从起点出发最多能够得到权和,某条边可重复经过


有向图能够重复经过的边当且仅当成环,所以tarjan缩点成DAG,缩点后每个点内的权值可以通过二分算出,假设最大的$n$使得$w-\frac{n(n+1)}{2}\ge 0$,那么该点值为$(n+1)w-\frac{n(n+1)(n+2)}{6}$,通过对DAG进行dp算出最长路就是答案

代码

#include <bits/stdc++.h>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long LL;
const int N = 1000005;
int n, m, x, y, w, s;
int head[N], nxt[N], to[N], val[N], cnt;
inline void init(){memset(head, -1, sizeof(head)); cnt = 0;}
inline void add(int u, int v, int w) {to[cnt] = v, val[cnt] = w, nxt[cnt] = head[u], head[u] = cnt++;}
int head2[N], nxt2[N], to2[N], cnt2; LL val2[N];
inline void init2() {memset(head2, -1, sizeof(head)); cnt2 = 0;}
inline void add2(int u, int v, LL w) {to2[cnt2] = v, val2[cnt2] = w, nxt2[cnt2] = head2[u], head2[u] = cnt2++;}
int dfs_ind = 1, dfn[N], low[N], sccno[N], scc_cnt = 0;
LL w_[N];
stack<int> st;
void tarjan(int u) {
dfn[u] = low[u] = dfs_ind++;
st.push(u);
for(int i = head[u]; ~i; i = nxt[i]) {
int v = to[i];
if(!dfn[v]) {tarjan(v); low[u] = min(low[u], low[v]);}
else if(!sccno[v]) {low[u] = min(low[u], dfn[v]);}
}
if(dfn[u] == low[u]) {
scc_cnt++;
while(1) {
int x = st.top(); st.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
inline LL cal(LL x) {
LL n = sqrt(2.0 * x + 0.25) - 0.5;
return (n + 1) * x - (n + 1) * (n + 2) * n / 6;
}
void DAG() {
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(sccno,0,sizeof(sccno));
memset(w_,0,sizeof(w_));
init2();
for(int i = 1; i <= n; ++i) if(!dfn[i]) tarjan(i);
for(int i = 1; i <= n; ++i) {
for(int j = head[i]; ~j; j = nxt[j]) {
int v = to[j];
if(sccno[i] != sccno[v]) {
add2(sccno[i], sccno[v], 1LL * val[j]);
}else w_[sccno[i]] += cal(val[j]);
}
}
}
LL dp[N];
void dfs(int u) {
if(~dp[u]) return;
dp[u] = w_[u];
for(int i = head2[u]; ~i; i = nxt2[i]) {
dfs(to2[i]);
dp[u] = max(dp[u], w_[u] + dp[to2[i]] + val2[i]);
}
}
int main() {
init();
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; ++i) {
scanf("%d%d%d", &x, &y, &w);
add(x, y, w);
}
scanf("%d", &s);
DAG();
memset(dp, -1, sizeof(dp));
dfs(sccno[s]);
cout << dp[sccno[s]] << endl;
return 0;
}

【Codeforces】894E.Ralph and Mushrooms Tarjan缩点+DP的更多相关文章

  1. CodeForces - 894E Ralph and Mushrooms (强连通缩点+dp)

    题意:一张有向图,每条边上都有wi个蘑菇,第i次经过这条边能够采到w-(i-1)*i/2个蘑菇,直到它为0.问最多能在这张图上采多少个蘑菇. 分析:在一个强连通分量内,边可以无限次地走直到该连通块内蘑 ...

  2. 硬币问题 tarjan缩点+DP 莫涛

    2013-09-15 20:04 题目描述 有这样一个游戏,桌面上摆了N枚硬币,分别标号1-N,每枚硬币有一个分数C[i]与一个后继硬币T[i].作为游戏参与者的你,可以购买一个名为mlj的小机器人, ...

  3. Codeforces 949C(Data Center Maintenance,Tarjan缩点)

    难度系数:1900 graphs 题意:有 n 个银行,m 个客户,每个客户都把自己的资料放在 2 个银行,一天总共有 h 小时,每个银行每天都要维护一小时,这一小时内银行无法工作,但是这一小时客户仍 ...

  4. BZOJ 1179 (Tarjan缩点+DP)

    题面 传送门 分析 由于一个点可以经过多次,显然每个环都会被走一遍. 考虑缩点,将每个强连通分量缩成一个点,点权为联通分量上的所有点之和 缩点后的图是一个有向无环图(DAG) 可拓扑排序,按照拓扑序进 ...

  5. Libre OJ 2255 (线段树优化建图+Tarjan缩点+DP)

    题面 传送门 分析 主体思路:若x能引爆y,从x向y连一条有向边,最后的答案就是从x出发能够到达的点的个数 首先我们发现一个炸弹可以波及到的范围一定是坐标轴上的一段连续区间 我们可以用二分查找求出炸弹 ...

  6. NOIP2009最优贸易[spfa变形|tarjan 缩点 DP]

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  7. Codeforces 894.E Ralph and Mushrooms

    E. Ralph and Mushrooms time limit per test 2.5 seconds memory limit per test 512 megabytes input sta ...

  8. Codeforces Round #447 (Div. 2)E. Ralph and Mushrooms

    Ralph is going to collect mushrooms in the Mushroom Forest. There are m directed paths connecting n  ...

  9. 【题解】CF894E Ralph and Mushrooms (缩点)

    [题解]CF894E Ralph and Mushrooms (缩点) 这是紫?给个解方程算法 考虑一条边若可以重复遍历说明一定有环,有环的话一定会把环上的蘑菇榨干,考虑一条边从全部到榨干的贡献是多少 ...

随机推荐

  1. 美柚“姨妈假”上头条,App事件营销怎么做

        近期,微博上有关"姨妈假"的话题异常火爆,事件源于厦门互联网企业美柚所推出的一项"奇葩福利"------女员工可向公司请姨妈假.此事经媒体报道.微博爆料 ...

  2. c/c++:回调函数

    1:函数名为指针 首先,在C语言中函数是一种function-to-pointer的方式,即对于一个函数,会将其自己主动转换成指针的类型.如: 1 #include<stdio.h> 2 ...

  3. UIView创建的两种方式

    //通过xib创建 NSBundle * bundle = [NSBundle mainBundle]; NSArray * arr = [bundle loadNibNamed:@"myV ...

  4. hdu1081 最大子矩阵

    最大子矩阵自然直在最大连续子序列的升级版  只是其原理都是用到了动态规划思想     仅仅是矩阵用到了枚举 +合并       把非常多列看成是一列的和 #include<stdio.h> ...

  5. 使用java+TestNG进行接口回归测试

    TestNG是一个开源自动化测试框架,“NG”表示下一代(Next Generation的首字母). TestNG类似于JUnit(特别是JUnit 4),但它不是JUnit框架的扩展,相较于Juni ...

  6. 一张图帮你看懂 iPhone 6 Plus 的屏幕分辨率

    一张图帮你看懂 iPhone 6 Plus 的屏幕分辨率 几天前公布的 iPhone 6 Plus 官方标称屏幕是 1920 x 1080 的,可是在 Xcode 中我们发现模拟器的屏幕事实上是看似奇 ...

  7. Centos 7.0系统服务管理

    从Centos7开始,不再用sysvinit管理系统服务了,而是改用了systemd,因此对系统服务管理方法已经变更,以下简述 1.查看当前所有系统服务的状态 systemctl 2.查看指定系统服务 ...

  8. Flyweight Design Pattern 共享元设计模式

    就是利用一个类来完毕多种任务.不用每次都创建一个新类. 个人认为这个设计模式在C++里面,好像能够就使用一个函数取代,利用重复调用这个函数完毕任务和重复利用这个类,好像几乎相同. 只是既然是一个设计模 ...

  9. 手动删除引用nuget如何还原

    1.不小心从项目的引用中删除了nuget安装的程序集; 2.从其他地方复制的packages.config到当前项目; 这两种情况 在解决方案中是无法通过还原nuget来还原程序集的,可以通过以下的方 ...

  10. 【BZOJ3671】[Noi2014]随机数生成器 暴力

    [BZOJ3535][Noi2014]随机数生成器 Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个 ...