SRCNN学习(一):demo_SR.m

一、demo_SR.m 使用方法

1、Place the "SRCNN" folder into "($Caffe_Dir)/examples

2、Open MATLAB and direct to ($Caffe_Dir)/example/SRCNN, run "demo_SR.m"


二、demo_SR.m 运行结果

根据 demo.m 的代码,显示结果为双三次插值后的图片和 SRCNN 重建后的图片,同时输出双三次插值的峰值信噪比以及 SRCNN 重建的峰值信噪比。

  • 原图:

  • 双三次插值 vs SRCNN重建:


三、demo_SR.m 代码分析

  • 根据邹老师的提示:进行单步跟踪,看代码同时要边调试边看效果

  • 我选择 Matlab 中的运行节对代码进行查看

  • 读取真实图像

close all;
clear all 清空工作区 %% read ground truth image
im = imread('Set5\butterfly_GT.bmp');

此时读入名为 butterbly_GT 的图片,工作区显示图片的值

  • 设定参数

%% set parameters
up_scale = 3;
model = 'model\9-5-5(ImageNet)\x3.mat';

这段代码实现参数设置的功能。

其中up_scale为这段代码设定的放大倍率,当 up_scale = 3 时,选择模型为 x3.mat

  • 仅在照度方面

%% work on illuminance only
if size(im,3)>1
im = rgb2ycbcr(im);
im = im(:, :, 1);
end
im_gnd = modcrop(im, up_scale);
im_gnd = single(im_gnd)/255;

size(im,3) 返回第三维度的长度,由前面可知 im 的值为 256x256x3 uint8,所以返回值应大于1会进入循环。

rgb2ycbcr(im) 将彩色RGB图像转换为 YCbCr 颜色空间中的等效图像, im(:,:,1) 将 im 的第三维度长修改为1。

modcrop(im,up_scale) 该函数在 modcrop.m 文件中有对应的定义:

function imgs = modcrop(imgs, modulo)      modcrop函数
if size(imgs,3)==1
sz = size(imgs);
sz = sz - mod(sz, modulo);
imgs = imgs(1:sz(1), 1:sz(2));
else
tmpsz = size(imgs);
sz = tmpsz(1:2);
sz = sz - mod(sz, modulo);
imgs = imgs(1:sz(1), 1:sz(2),:);
end

该函数将图片裁剪为能够调整的大小(与放大率匹配)

  • 双三次插值

%% bicubic interpolation
im_l = imresize(im_gnd, 1/up_scale, 'bicubic'); %缩小三倍
im_b = imresize(im_l, up_scale, 'bicubic'); %放大三倍

imresize() 函数用于调整图像大小,在这里的用法传入三个参数,第一为图片,第二为函数将 图像的长宽大小缩放的倍数,第三为缩放的方法,这里使用的 bicubic 即双三次插值的方法。使用双三次插值的方法产生的图片输出像素值是最近 4×4 邻点中的像素的加权平均值。

至此,梳理各个参数所代表的值

  • im_l :im_gnd 进行双三次插值缩小后的图像

  • im_b : im_gnd 进行双三次插值缩小后,再进行同比例放大的图像

  • SRCNN

%%  SRCNN
im_h = SRCNN(model, im_b);

此过程根据 SRCNN 对 im_b 进行训练,产生 im_h 图像

  • 删除边框

%%  remove border
im_h = shave(uint8(im_h * 255), [up_scale, up_scale]);
im_gnd = shave(uint8(im_gnd * 255), [up_scale, up_scale]);
im_b = shave(uint8(im_b * 255), [up_scale, up_scale]);

shave() 函数在文件 shave.m 中有定义:

function I = shave(I, border)
I = I(1+border(1):end-border(1),...
1+border(2):end-border(2), :, :,);
  • 计算 PSNR

%%  compute PSNR
psnr_bic = compute_psnr(im_gnd,im_b);
psnr_srcnn = compute_psnr(im_gnd,im_h);

compute_psnr() 函数在文件 compute_psnr.m 中有定义

function psnr=compute_psnr(im1,im2)
if size(im1, 3) == 3,
im1 = rgb2ycbcr(im1);
im1 = im1(:, :, 1);
end if size(im2, 3) == 3,
im2 = rgb2ycbcr(im2);
im2 = im2(:, :, 1);
end imdff = double(im1) - double(im2);
imdff = imdff(:); rmse = sqrt(mean(imdff.^2));
psnr = 20*log10(255/rmse);

在论文中提到 PSNR 是一种用于定量评估图像恢复质量的广泛使用的度量,并且与感知质量部分相关,2个图像之间 PSNR 值越大,则越相似。普遍基准为 30dB ,30dB 以下的图像劣化较为明显。PSNR 定义为:

PSNR = 10log10(MAX^2/MSE)

这里 MAX 表示图像颜色的最大数值,8bit 图像取值为255。MSE(均方差),即 m×n 单色图像 I 和 K(原图像与处理图像)之间均方误差。

compute_psnr() 就是对生成的图像与原图对比,形成信噪比的直观查看方式。

  • 显示结果

%%  show results
fprintf('双三次插值的峰值信噪比: %f dB\n', psnr_bic);
fprintf('SRCNN 重建的峰值信噪比: %f dB\n', psnr_srcnn); figure, imshow(im_b); title('双三次插值');
figure, imshow(im_h); title('SRCNN 重建'); imwrite(im_b, ['双三次插值' '.bmp']);
imwrite(im_h, ['SRCNN 重建' '.bmp']);

输出两张图片,以及两次比较的信噪比。


四、实践

由于通过论文给的函数只会输出灰度的图像,我在网上查看他人的代码时发现输出具有颜色的图像的方式。

下面时我根据他的代码进行修改后输出的结果

close all;
clear all; %% read ground truth image 读取真实图像
im = imread('Set5\butterfly_GT.bmp'); %% set parameters 设定参数
up_scale = 3;
model = 'model\9-5-5(ImageNet)\x3.mat'; %% work on illuminance only 仅在照度方面
if size(im,3)>1
im = rgb2ycbcr(im);
im_U = im(:, :, 1);
end
im_gnd = modcrop(im_U, up_scale);
im_gnd = single(im_gnd)/255;
im_gnd2 = modcrop(im, up_scale);
im_gnd2 = single(im_gnd2)/255;
im_2 = im_gnd2(:, :, 2);
im_3 = im_gnd2(:, :, 3); %% bicubic interpolation 双三次插值
im_l = imresize(im_gnd, 1/up_scale, 'bicubic');
im_b = imresize(im_l, up_scale, 'bicubic'); %% SRCNN
im_h = SRCNN(model, im_b); %% 三通道合回
[m,n] = size(im_h);
im_h1 = zeros(m,n,3);
im_h1(:, :, 1) = im_h;
im_h1(:, :, 2) = im_2;
im_h1(:, :, 3) = im_3;
im_h1 = uint8(im_h1 * 255);%转回uint8
im_h1 = ycbcr2rgb(im_h1);%转回rgb %% remove border 删除边框
im_h1 = shave(im_h1, [up_scale, up_scale]); %% show results 显示结果
figure, imshow(im_h1);
title('SRCNN 重建');


五、结语

这周的学习主要是对 SRCNN 的整个流程进行了重新认识,明白了各个步骤的主要任务,了解到论文中 SRCNN 其实是对图片的 Y 通道提取后,进行重建,最后通过输出 PSNR 和图片的方式,来对重建的程度进行分析。

下周将对 SRCNN.m 文件进行学习,并在学习卷积、步长等概念后对 SRCNN 的三个卷积过程有更深刻的理解。

参考博客:超分辨率重建SRCNN--Matlab 7.0中运行

SRCNN(一)的更多相关文章

  1. 『超分辨率重建』从SRCNN到WDSR

    超分辨率重建技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像.SR可分为两类:    1. 从多张低分辨率图像重建出高分辨率图像    2. 从单张低分辨率图 ...

  2. SRCNN

    SRCNN(超分辨率卷积神经网络) 网络结构 l  Conv1: f1 = 9 *9 activation = ‘relu’ l  Conv2: f2 = 1 *1 activation = ‘rel ...

  3. SRcnn:神经网络重建图片的开山之作

    % ========================================================================= % Test code for Super-Re ...

  4. SRCNN之后的深度学习超分辨率

    SRCNN开山之作 IDN 信息蒸馏网络information distillation network(IDN) Fast and Accurate Single Image Super-Resol ...

  5. SRCNN代码分析

    代码是作者页面上下载的matlab版.香港中文大学汤晓鸥教授.Learning a Deep Convolutional Network for Image Super-Resolution. htt ...

  6. 体验SRCNN和FSRCNN两种图像超分网络应用

    摘要:图像超分即超分辨率,将图像从模糊的状态变清晰. 本文分享自华为云社区<图像超分实验:SRCNN/FSRCNN>,作者:zstar. 图像超分即超分辨率,将图像从模糊的状态变清晰.本文 ...

  7. 比SRCNN效果好的传统超分辨率算法汇总

    1.基于深度协作表达的人脸图像超分辨率算法研究与应用_百度学术 采用一种深度协作表达算法框架,构造深度的多线性模型 分段拟合高低分辨率图像块之间的非线性关系,本文算法简洁高效,提供了一种新的深度学习模 ...

  8. SRCNN 卷积神经网络

    2019-05-19 从GitHub下载了代码(这里) 代码量虽然不多,但是第一次学,花了时间还是挺多的.根据代码有跑出结果(基本没有改),但是对于数据集的处理还是看的很懵逼,主要是作者的实现都是用类 ...

  9. DL论文

    题目:Accurate Image Super-Resolution Using Very Deep Convolutional Networks(2016CVPR) 摘要:文中提出了一种高精度处理单 ...

随机推荐

  1. UVA 1213 - Sum of Different Primes(递推)

    类似一个背包问题的计数问题.(虽然我也不记得这叫什么背包了 一开始我想的状态定义是:f[n = 和为n][k 个素数]. 递推式呼之欲出: f[n][k] = sigma f[n-pi][k-1]. ...

  2. linux 硬链接与软链接的区别

      硬链接的特点:不添加新文件 不能跨区建立 不能对目录建立 删除源文件硬链接正常访问   ln 源文件 目标链接文件   软连接的特点:会添加新文件 可以跨区建立 可以对目录建立 删除源文件软连接不 ...

  3. 使用OpenFileDialog组件打开多个文

    实现效果: 知识运用: OpenFileDialog组件的Multiselect属性 //是否允许多选 public bool Multiselect {get;ser;} FileNames属性 / ...

  4. SpringBoot学习记录(一)

    1. Spring的Java配置方式 Java配置是Spring4.x推荐的配置方式,可以完全替代xml配置. 1.1. @Configuration 和 @Bean Spring的Java配置方式是 ...

  5. 使用dotnet-dump 查找 .net core 3.0 占用CPU 100%的原因

    公司的产品一直紧跟 .net core 3.0 preview 不断升级, 部署到 Linux 服务器后, 偶尔会出现某个进程CPU占用100%. 由于服务部署在云上, 不能使用远程调试; 在局域网内 ...

  6. C# 文件操作 常用的类

    File------实用类,提供许多静态方法,用于移动.删除.和复制文件. Directory------实用类,提供许多静态方法,用于移动.删除和复制目录. Path------ 实用类,用于处理路 ...

  7. Servlet 学习小结

    一.是什么 是用java编写的服务器端程序.从狭义来讲,servlet是java语言实现的一个接口:广义的servlet是指任何实现了这个servlet接口的类.一般情况下,人们将servlet理解为 ...

  8. Oracle分页抽数存储过程

    --outTotal是需要返回的总数,v_loginUserId是传入的登录人ID,抽取他的客户,v_CurrPage是传入的第几页,v_pageSize传入的每页数据条数. ) FROM tb_cu ...

  9. Qt之QThread随记

    这是一篇随记,排版什么的就没有那么好了:) 首先要知道,一个线程在资源分配完之后是以某段代码为起点开始执行的,例如STL内的std::thread,POSIX下的pthread等,都是以函数加其参数之 ...

  10. 用纯CSS实现加载中动画效果

    HTML <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut&quo ...