支持向量机(SVM)、支持向量回归(SVR)
1、支持向量机( SVM )是一种比较好的实现了结构风险最小化思想的方法。它的机器学习策略是结构风险最小化原则 为了最小化期望风险,应同时最小化经验风险和置信范围)
支持向量机方法的基本思想:
( 1 )它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力;
( 2 )它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题;
( 3 )它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。
目前, SVM 算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。
对于经验风险R,可以采用不同的损失函数来描述,如e不敏感函数、Quadratic函数、Huber函数、Laplace函数等。
核函数一般有多项式核、高斯径向基核、指数径向基核、多隐层感知核、傅立叶级数核、样条核、 B 样条核等,虽然一些实验表明在分类中不同的核函数能够产生几乎同样的结果,但在回归中,不同的核函数往往对拟合结果有较大的影响
2、支持向量回归算法
主要是通过升维后,在高维空间中构造线性决策函数来实现线性回归,用e不敏感函数时,其基础主要是 e 不敏感函数和核函数算法。
若将拟合的数学模型表达多维空间的某一曲线,则根据e 不敏感函数所得的结果,就是包括该曲线和训练点的“ e管道”。在所有样本点中,只有分布在“管壁”上的那一部分样本点决定管道的位置。这一部分训练样本称为“支持向量”。为适应训练样本集的非线性,传统的 拟合方法通常是在线性方程后面加高阶项。此法诚然有效,但由此增加的可调参数未免增加了过拟合的风险。支持向量回归算法采用核函数解决这一矛盾。用核函数 代替线性方程中的线性项可以使原来的线性算法“非线性化”,即能做非线性回归。与此同时,引进核函数达到了“升维”的目的,而增加的可调参数是过拟合依然 能控制。
支持向量机(SVM)、支持向量回归(SVR)的更多相关文章
- day-10 sklearn库实现SVM支持向量算法
学习了SVM分类器的简单原理,并调用sklearn库,对40个线性可分点进行训练,并绘制出图形画界面. 一.问题引入 如下图所示,在x,y坐标轴上,我们绘制3个点A(1,1),B(2,0),C(2,3 ...
- 【基础知识六】支持向量机SVM
开发库: libsvm, liblinear GitHub地址 SVM难点:核函数选择 一.基本问题 找到约束参数ω和b,支持向量到(分隔)超平面的距离最大:此时的分隔超平面称为“最优超平面 ...
- 支持向量机SVM
SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类. 有好 ...
- 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...
- 支持向量机SVM——专治线性不可分
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...
- [转] 从零推导支持向量机 (SVM)
原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要 ...
- 支持向量机(SVM)入门
一.简介 支持向量机,一种监督学习方法,因其英文名为support vector machine,故一般简称SVM. 通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器, ...
- 机器学习(二)—支持向量机SVM
1.SVM的原理是什么? SVM是一种二类分类模型.它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器.(间隔最大是它有别于感知机) 试图寻找一个超平面来对样本分割,把样本中的正例和反例 ...
- 机器学习:支持向量机(SVM)
SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这 ...
随机推荐
- 【十大算法实现之KNN】KNN算法实例(含测试数据和源码)
KNN算法基本的思路是比较好理解的,今天根据它的特点写了一个实例,我会把所有的数据和代码都写在下面供大家参考,不足之处,请指正.谢谢! update:工程代码全部在本页面中,测试数据已丢失,建议去UC ...
- HR别掉坑里了,送你最精确的计薪算法!
月工资的计算方式有多种多样.即便是资深的HR,也会犯常识性的错误,正算反算,哪一个方法更适合,有时还会容易出现数字偏差,回想一下,你们公司的工资是如何计算的? 第一 劳动工资计算标准按几天计算 根 ...
- 遍历json数组实现树
今天小颖在工作中遇到要遍历树得问题了,实现后,怕后期遇到又忘记啦,所以记录下嘻嘻,其实这个和小颖之前写过得一篇文章 json的那些事 中第4点有关json的面试题有些类似. 数组格式: v ...
- PHP服务器访问优化
常规的优化措施: 磁盘写入,网络安全,证书加密,CPU,内存,DNS解析,数据库优化,页面gzip压缩 PHP gzip压缩打开: 打开php目录下的php.ini文件,找到zlib.output_c ...
- NET中的设计模式---单件模式
如众所知,单件模式做为<Gof 23中设计模式>之一,其意图仅允许单件类的一个实例存在(扩展单件模式不在此文范围内),并提供全局的访问方法.UML类图如下. http://csharpin ...
- 【BZOJ4445】[Scoi2015]小凸想跑步 半平面交
[BZOJ4445][Scoi2015]小凸想跑步 Description 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸n边形,N个顶点按照逆时针从0-n-l编号.现 ...
- thinkphp开启事物的简单方法
使用thinkphp开启事务,ThinkPHP 3.2.2实现事务操作的方法: 开启事务: $User->startTrans() 提交事务: $User->commit() 事务回滚: ...
- 关于Django的序列化
阅读目录 Django支持的序列化格式 Django的序列化 Django支持的序列化格式 1 2 3 4 Identifier Information xml Serializes to and f ...
- OOA/D 01
建筑师一般不会为一栋100层的楼添加一个新的地下室,因为成本太高无疑会失败,但软件系统里提出类似改动需求时,他们通常都不会多想一下,相反他们会说:这只是一个简单的编程问题 可总会有一些看似极难完成.但 ...
- Centos 添加永久路由
今天在用虚拟机测试的时候,突然发现外网不通了,记得之前加过路由的,重启网络服务后就没了,仔细一想,应该是添加的路由是临时的,一重启就没了,于是乎就有了想把它永久写入的冲动,在看了一些文档之后,只要在/ ...