1、支持向量机( SVM )是一种比较好的实现了结构风险最小化思想的方法。它的机器学习策略是结构风险最小化原则 为了最小化期望风险,应同时最小化经验风险和置信范围)

支持向量机方法的基本思想:

( 1 )它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力;

( 2 )它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题;

( 3 )它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。

目前, SVM 算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。

对于经验风险R,可以采用不同的损失函数来描述,如e不敏感函数、Quadratic函数、Huber函数、Laplace函数等。

核函数一般有多项式核、高斯径向基核、指数径向基核、多隐层感知核、傅立叶级数核、样条核、 B 样条核等,虽然一些实验表明在分类中不同的核函数能够产生几乎同样的结果,但在回归中,不同的核函数往往对拟合结果有较大的影响

2、支持向量回归算法

主要是通过升维后,在高维空间中构造线性决策函数来实现线性回归,用e不敏感函数时,其基础主要是 e 不敏感函数和核函数算法。

若将拟合的数学模型表达多维空间的某一曲线,则根据e 不敏感函数所得的结果,就是包括该曲线和训练点的“ e管道”。在所有样本点中,只有分布在“管壁”上的那一部分样本点决定管道的位置。这一部分训练样本称为“支持向量”。为适应训练样本集的非线性,传统的 拟合方法通常是在线性方程后面加高阶项。此法诚然有效,但由此增加的可调参数未免增加了过拟合的风险。支持向量回归算法采用核函数解决这一矛盾。用核函数 代替线性方程中的线性项可以使原来的线性算法“非线性化”,即能做非线性回归。与此同时,引进核函数达到了“升维”的目的,而增加的可调参数是过拟合依然 能控制。

支持向量机(SVM)、支持向量回归(SVR)的更多相关文章

  1. day-10 sklearn库实现SVM支持向量算法

    学习了SVM分类器的简单原理,并调用sklearn库,对40个线性可分点进行训练,并绘制出图形画界面. 一.问题引入 如下图所示,在x,y坐标轴上,我们绘制3个点A(1,1),B(2,0),C(2,3 ...

  2. 【基础知识六】支持向量机SVM

    开发库: libsvm, liblinear      GitHub地址 SVM难点:核函数选择 一.基本问题 找到约束参数ω和b,支持向量到(分隔)超平面的距离最大:此时的分隔超平面称为“最优超平面 ...

  3. 支持向量机SVM

    SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类. 有好 ...

  4. 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

    项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...

  5. 支持向量机SVM——专治线性不可分

    SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...

  6. [转] 从零推导支持向量机 (SVM)

    原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要 ...

  7. 支持向量机(SVM)入门

    一.简介 支持向量机,一种监督学习方法,因其英文名为support vector machine,故一般简称SVM. 通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器, ...

  8. 机器学习(二)—支持向量机SVM

    1.SVM的原理是什么? SVM是一种二类分类模型.它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器.(间隔最大是它有别于感知机) 试图寻找一个超平面来对样本分割,把样本中的正例和反例 ...

  9. 机器学习:支持向量机(SVM)

    SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这 ...

随机推荐

  1. 转载->C#中的委托的使用和讲解

    C# 中的委托 引言 委托 和 事件在 .Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易.它们就像是一道槛儿,过了这个槛的人,觉得真是太容 ...

  2. Nginx安装及配置文件nginx.conf详解

    1.安装Nginx 在安装Nginx之前,需确保系统已经安装了gcc. openssl-devel. pcre-devel和zlib-devel软件库. 下面是Nginx安装过程: wget http ...

  3. 部署OpenStack问题汇总(四)--openstack中nova-compute状态status显示为'XXX'的问题

    本博客已经添加"打赏"功能,"打赏"位置位于右边栏红色框中,感谢您赞助的咖啡. 第一次部署openstack的时候就遇见了这个问题,当时的版本是havana, ...

  4. Linux mint 亮度调节

    刚装上的mint亮度严重影响操作,快速调节mint亮度的方法 echo 1000 >/sys/class/backlight/intel_backlight/brightness 1000这个数 ...

  5. Maven属性(properties)标签的使用

    在命令行使用属性时,是-D,比如:mvn -D input=test Properties 属性是了解POM基础知识的最后一个要素.Maven属性是值占位符,如Ant中的属性.它们的值可以通过使用符号 ...

  6. 【JSP】EL表达式语言

    EL简介 EL语言原本是JSTL1.0中的技术(所以EL和JSTL配合如此亲密和默契也就是自然的了),但是从JSP2.0开始(JSTL1.1)就分离出来纳入了JSP的标准了.因此EL不需要任何jar包 ...

  7. cadence allegro 封装焊盘编号修改 (引脚编号修改)

    1. 打开dra文件在find里面 off all  然后只点击text 2.点击需要更改的焊盘 3.菜单栏edit - text 4.弹出窗口修改即可 注意: 按照网上的其他操作并没有执行步骤1操作 ...

  8. Linux shell一行流编程实践

    Linux下很多命令用起来真相当方便,尤其是进行批处理操作时.(话说感觉这种程序也不复杂,windows咋一直不搞一个好用的shell呢) 这里列出一些实际shell操作的应用场景,具体命令的用法与解 ...

  9. Twig---基本使用

    三种特殊语法: {{ … }}   “说些什么”:输出一个变量值或者一个表达式的结果到模板.如:{{ item.username }}. twig也包含filters,它可以在模板渲染之前改变输出内容 ...

  10. 【转】“菜”鸟理解.NET Framework(CLI,CLS,CTS,CLR,FCL,BCL)

    原文地址:http://www.cnblogs.com/eshizhan/archive/2010/01/26/1657041.html 既然要学.NET,就要先认识认识她,我不喜欢大段大段文字的东西 ...