HDU 1114:Piggy-Bank(完全背包)
Piggy-Bank
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 34301 Accepted Submission(s): 17010
Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.
But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
题意
存钱罐里有一些钱(硬币)。所有硬币的重量已知,空存钱罐的质量e,装有钱的存钱罐的质量为f,有n行,每行代表一种硬币,每行的第一个数p表示硬币的面值,第二个数w表示硬币的重量。
对于给定总重量的硬币,所能得到的最少金额。如果无法恰好得到给定的重量。
思路
算是完全背包模板吧,求出来给出来的硬币的最小值,把原来的模板里的max换成了min ,对dp数组赋予一个很大的初始值(dp【0】还是0,保证所有状态都是从0转移来的)。最后判断能不能转移到f-e的状态即可
AC代码
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#define ll long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x3f3f3f3f
const double E=exp(1);
const int maxn=1e4+10;
using namespace std;
int p[maxn],w[maxn];
int dp[maxn];
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
int t;
cin>>t;
int n;
int e,f;
while(t--)
{
ms(p);
ms(w);
ms(dp);
cin>>e>>f;
cin>>n;
for(int i=0;i<n;i++)
cin>>p[i]>>w[i];//p->value;w->size
int res=f-e;
for(int i=1;i<maxn;i++)
dp[i]=INT_MAX/2;
for(int i=0;i<n;i++)
for(int j=w[i];j<=res;j++)
dp[j]=min(dp[j],dp[j-w[i]]+p[i]);
if(dp[res]==INT_MAX/2)
cout<<"This is impossible."<<endl;
else
cout<<"The minimum amount of money in the piggy-bank is "<<dp[res]<<"."<<endl;
}
return 0;
}
HDU 1114:Piggy-Bank(完全背包)的更多相关文章
- HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)
HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...
- HDU 1114 Piggy-Bank(完全背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题目大意:根据储钱罐的重量,求出里面钱最少有多少.给定储钱罐的初始重量,装硬币后重量,和每个对应 ...
- HDU - 1114 Piggy-Bank 【完全背包】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1114 题意 给出一个储钱罐 不知道里面有多少钱 但是可以通过重量来判断 先给出空储钱罐的重量 再给出装 ...
- 题解报告:hdu 1114 Piggy-Bank(完全背包恰好装满)
Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...
- hdu(1114)——Piggy-Bank(全然背包)
唔..近期在练基础dp 这道题挺简单的(haha).可是我仅仅想说这里得注意一个细节. 首先题意: 有T组例子,然后给出储蓄罐的起始重量E,结束重量F(也就是当它里面存满了零钱的时候).然后给你一个数 ...
- HDU 1114 Piggy-Bank ——(完全背包)
差不多是一个裸的完全背包,只是要求满容量的最小值而已.那么dp值全部初始化为inf,并且初始化一下dp[0]即可.代码如下: #include <stdio.h> #include < ...
- HDU - 1114 Piggy-Bank(完全背包讲解)
题意:背包重量为F-E,有N种硬币,价值为Pi,重量为Wi,硬币个数enough(无穷多个),问若要将背包完全塞满,最少需要多少钱,若塞不满输出“This is impossible.”. 分析:完全 ...
- HDU 1114 完全背包 HDU 2191 多重背包
HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...
- Piggy-Bank(HDU 1114)背包的一些基本变形
Piggy-Bank HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...
- HDU 1114 Piggy-Bank(一维背包)
题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...
随机推荐
- centos7: vsftpd安装及启动: ftp配置(以虚拟用户为例)
centos7: vsftpd安装及启动: ftp配置 1安装: yum -y install vsftpd /bin/systemctl start vsftpd.service #启动 /bin/ ...
- python 在 Windows Server 2008 r2 上 安装失败
Microsoft Visual C++ 2008 Redistributable Package link (x86): https://www.microsoft.com/en-us/downlo ...
- Confluence 6 从 Crowd 或 JIRA 应用中切换回使用内部用户管理
如果你的 Confluence 站点当前使用的是 Crowd 或者 Jira 应用程序管理你的用的话,你可以按照下面的步骤切换使用回内部目录管理你的用户. 如果你的 Confluence 站点只有少量 ...
- Weird journey CodeForces - 788B (路径计数)
大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...
- NOJ-1581 筷子 (线性DP)
题目大意:有n支筷子,已知长度,定义一双筷子的质量等于长度的平方差,问能否分成k双?若能,输出所有筷子的最小质量和. 题目分析:先将筷子按长度从小到大排序,定义状态dp(i,j)表示将前 i 支筷子分 ...
- dp练习(8)——数的划分
1039 数的划分 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 将整数 ...
- Session的方法getSession() 与 getSession(boolean para)区别
getSession(boolean para)返回当前http会话,如果不存在,则创建一个新的会话getSession() 调用getSession(true)的简化版 [官方解释] getSess ...
- pageContext对象
pageContext对象是JSP中很重要的一个内置对象; 1.pageContext对象存取其他隐含对象属性的方法,此时需要指定范围的参数. getAttribute(String name):取得 ...
- kill word out e ef en em
1● e 2● ef 出,出来 3● en 4● em 使~进入状态,包围,进入~之中
- 导出cnblogs文章
导出cnblogs文章 网址 http://download.csdn.net/download/zlj1817/9001869 下载