2018-07-14 09:57:59

问题描述:

问题求解:

本题本质上是个挺模板的题目。本质是一个求最后每个落点的数目,用总的数目来除有所可能生成的可能性。这种计数的问题可以使用动态规划来进行解决。

在本题中有两个注意点:

1)可以使用两个数组滚动使用来实现重复利用,这里我的实现使用了一个trick就是结合奇偶性来完成数组滚动;

2)dp数组需要定义成double类型的,如果定义成int类型的,在后期会出现溢出的问题。

    public double knightProbability(int N, int K, int r, int c) {
double[][][] dp = new double[2][N][N];
int[][] dir = new int[][]{
{-1, -2},
{-2, -1},
{1, -2},
{2, -1},
{-1, 2},
{-2, 1},
{1, 2},
{2, 1},
};
dp[0][r][c] = 1;
for (int k = 0; k < K; k++) {
fill2D(dp, (k + 1) & 1, N);
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
for (int m = 0; m < 8; m++) {
int u = i + dir[m][0];
int v = j + dir[m][1];
if (u < 0 || u >= N || v < 0 || v >= N) continue;
dp[(k + 1) & 1][u][v] += dp[k & 1][i][j];
}
}
}
}
double total = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
total += dp[K & 1][i][j];
}
}
return total / Math.pow(8, K);
} private void fill2D(double[][][] array, int layer, int n) {
for (int i = 0; i < n; i++) Arrays.fill(array[layer][i], 0);
}

Follow up:

问题描述:

问题求解:

如出一辙。

    public int findPaths(int m, int n, int N, int i, int j) {
int[][] dp = new int[m][n];
dp[i][j] = 1;
int res = 0;
int mod = (int)Math.pow(10, 9) + 7;
int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
for (int step = 0; step < N; step++) {
int[][] cur = new int[m][n];
for (int pi = 0; pi < m; pi++) {
for (int pj = 0; pj < n; pj++) {
for (int[] dir : dirs) {
int x = pi + dir[0];
int y = pj + dir[1];
if (x < 0 || x >= m || y < 0 || y >= n) {
res = (res + dp[pi][pj]) % mod;
}
else cur[x][y] = (cur[x][y] + dp[pi][pj]) % mod;
}
}
}
dp = cur;
}
return res;
}

Knight Probability in Chessboard的更多相关文章

  1. leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard

    576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...

  2. [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  3. [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  4. 688. Knight Probability in Chessboard棋子留在棋盘上的概率

    [抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  5. 688. Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  6. LeetCode 688. Knight Probability in Chessboard

    原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...

  7. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  8. 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...

  9. LeetCode——688. Knight Probability in Chessboard

    一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...

随机推荐

  1. Centos下添加PHP对MSSQL的支持

    Leave a reply 其实很少会有连接SQL Server的机会,不过我们公司刚好有个应用需要使用的SQL Server的数据库,所以也知道给LNMP安装MSSQL的扩展. 搜索网上的相关文章一 ...

  2. #C语言初学记录(位运算)

    位运算 Problem Description7-1 数组元素循环右移问题 一个数组A中存有N(>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(≥0)个位置,即将A中的数据由 ...

  3. VS2010/MFC编程入门之四十二(MFC常用类:CString类)

    上一节鸡啄米讲了分割窗口的有关知识,本节开始讲解MFC的一些常用类,先来说说CString类. CString类简介 CString类作为MFC的常用类,当之无愧.可以这样说,只要是从事MFC开发,基 ...

  4. Javassist

    Javassist 实现动态代理 javassist 是一款非常优秀的Java 字节码引擎工具,能够在运行时编译.生成Java Class.

  5. python3.4学习笔记(十六) windows下面安装easy_install和pip教程

    python3.4学习笔记(十六) windows下面安装easy_install和pip教程 easy_install和pip都是用来下载安装Python一个公共资源库PyPI的相关资源包的 首先安 ...

  6. ACM题目————区间覆盖问题

    题目描述 设x1 , x2,... , xn是实直线上的n个点.用固定长度的闭区间覆盖这n个点,至少需要多少个这样的固定长度闭区间?设计解此问题的有效算法,并证明算法的正确性.编程任务:对于给定的实直 ...

  7. 20145104张家明 《Java程序设计》第9周学习总结

    20145104张家明 <Java程序设计>第9周学习总结 教材学习内容总结 第16章 -撰写应用程序是利用通信协议对数据库进行指令交换,以进行数据的增删查找. -JDBC目的:让Java ...

  8. C语言: 两个int变量相除,结果保留两位小数

    #include<stdio.h> void main() { ,j=; float h; h=(*/)/; printf("%.2f",h); } 注:%f:不指定宽 ...

  9. cmd命令分类

    1.系统功能类 AT:计划在计算机上运行的命令和程序.ATTRIB:显示或更改文件属性.BREAK:设置或清除扩展式 CTRL+C 检查.CACLS:显示或修改文件的访问控制列表(ACLs).CALL ...

  10. Python3基础 yield 在函数中的用法示例

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...