最近老师布置了一个作业,是做一个基于视频的车辆检测与追踪,用了大概两周的时间做了一个简单的,效果不是很理想,但抑制不住想把自己的一些认识写下来,这里就把一些网络上的博客整理一下分享给大家,希望帮助到大家,因为本人也是个小白,所以如果有什么讲的不对的地方希望各位看官多指正!

一、安装OpenCV和搭建环境

首先呢,大家得安装OpenCV,这里网络上有很多相关的教程,这里就不赘述了!我本人用的是OpenCV3.10+VS2015.

这里就贴出几个教程:

下载地址:http://opencv.org/downloads.html

安装教程:http://www.cnblogs.com/sopic/p/5265836.html(OpenCV3.0+VS2015)

http://blog.csdn.net/hustlx/article/details/50974336(OpenCV3.10+VS2015)

关于其他OpenCV版本的安装教程网络上也有很多,这里就只贴出这两个。

二、关于OpenCV的介绍

我看还是把网络上关于这方面好的教程给大家贴出来吧,我怕讲不好的话招笑话

首先是浅墨大神的系列博客,我基本上就是从大神的博客中学习到的,还有他的《OpenCV3.0编程入门》(强烈推荐!非常通熟易懂!网上一搜即可)

浅墨OpenCV入门教程

当然OpenCV中文论坛上的也很好,但是感觉跟浅墨大神的内容差不多

OpenCV中文论坛教程

三、系统结构设计

流程图:

这里可能设计到一些难理解的问题,同样也贴几个地址供大家学习:

混合高斯建模

BackgroundSubtractorMOG和BackgroundSubtractorMOG2

源码如下:

 #include <SDKDDKVer.h>
#include <stdio.h>
#include <tchar.h>
#include<iostream>
#include<opencv2\opencv.hpp>
#include<opencv2\video\background_segm.hpp> using namespace cv;
using namespace std; //对轮廓按面积降序排序,目的是去除那些小轮廓目标
bool descSort(vector<Point> p1, vector<Point> p2) {
return contourArea(p1) > contourArea(p2);
} int main() {
//读入视频
VideoCapture capture("E:\\临时\\workspace\\1.avi");
//定义一个Mat变量,用于存储每一帧的图像
Mat frame;
//前景
Mat mask;
//连通分量
Mat srcImage;
//结果
Mat result; //用混合高斯模型训练背景图像
Ptr<BackgroundSubtractorMOG2> bgsubtractor = createBackgroundSubtractorMOG2();
bgsubtractor->setVarThreshold(); //for (int k = 0; k < 100; k++)
//{
// //读取当前帧
// capture >> frame;
// //若视频播放完成,退出循环
// if (frame.empty())
// {
// break;
// }
// bgsubtractor->apply(frame, mask, 0.2);
//}
//imshow("前景训练结果", mask); //循环显示每一帧
while (true)
{ //读取当前帧
capture >> frame;
//若视频播放完成,退出循环
if (frame.empty())
{
break;
}
frame.copyTo(result);
//cvtColor(frame, frame, COLOR_GRAY2BGR);
bgsubtractor->apply(frame, mask, 0.2); imshow("原视频", frame); //显示当前帧
//waitKey(30); //延时30ms imshow("混合高斯建模", mask);
//waitKey(30); //cvtColor(mask, mask, COLOR_GRAY2BGR);
//对前景先进行中值滤波,再进行形态学膨胀操作,以去除伪目标和连接断开的小目标
medianBlur(mask, mask, );
//morphologyEx(mask, mask, MORPH_DILATE, getStructuringElement(MORPH_RECT, Size(5, 5))); //测试:先开运算再闭运算
morphologyEx(mask, mask, MORPH_CLOSE, getStructuringElement(MORPH_RECT, Size(, )));
morphologyEx(mask, mask, MORPH_OPEN, getStructuringElement(MORPH_RECT, Size(, ))); imshow("混合高斯建模", mask);
waitKey(); //拷贝
mask.copyTo(srcImage); //各联通分量的轮廓
//外层vector的size代表了图像中轮廓的个数,里面vector的 size代表了轮廓上点的个数
vector<vector<Point>> contours;
//只获取最外轮廓,获取每个轮廓的每个像素,并相邻两个像素位置差不超过1
findContours(srcImage, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE); //测试轮廓获取
imshow("轮廓获取", srcImage); if (contours.size() < ) continue;
//外接矩阵
Rect rct; //对轮廓进行外接矩阵之前先对轮廓按面积降序排序,目的为了去除小目标(伪目标)
sort(contours.begin(), contours.end(), descSort); for (int i = ; i < contours.size(); i++)
{
//当第i个连通分量的外接矩阵面积小于最大面积的1/6,则认为是伪目标
if (contourArea(contours[i]) < contourArea(contours[]) / )
break;
//包含轮廓的最小矩阵
rct = boundingRect(contours[i]);
rectangle(result, rct, Scalar(, , ), ); }
imshow("结果", result);
}
getchar();
return ;
}

基于OpenCV的车辆检测与追踪的实现的更多相关文章

  1. [转载]卡尔曼滤波器及其基于opencv的实现

    卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接, ...

  2. 图像矫正-基于opencv实现

    一.引言 上篇文章中四种方法对图像进行倾角矫正都非常有效.Hough变换和Radon相似,其抗干扰能力比较强,但是运算量大,程序执行慢,其改进方法为:我们可以不对整幅图像进行操作,可以在图像中选取一块 ...

  3. 基于 OpenCV 的人脸识别

    基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...

  4. 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  5. 基于OpenCv的人脸检测、识别系统学习制作笔记之一

    基于OpenCv从视频文件到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 Cv ...

  6. 基于opencv网络摄像头在ubuntu下的视频获取

     基于opencv网络摄像头在ubuntu下的视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译运行步骤 安装编译opencv-2.3  参 ...

  7. 基于opencv的小波变换

    基于opencv的小波变换 提供函数DWT()和IDWT(),前者完成任意层次的小波变换,后者完成任意层次的小波逆变换.输入图像要求必须是单通道浮点图像,对图像大小也有要求(1层变换:w,h必须是2的 ...

  8. 基于opencv在摄像头ubuntu根据视频获取

     基于opencv在摄像头ubuntu根据视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译执行步骤 安装编译opencv-2.3  參考h ...

  9. OpenCV2学习笔记(十四):基于OpenCV卡通图片处理

    得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+ ...

随机推荐

  1. NuGet镜像上线试运行

    为解决国内访问NuGet服务器速度不稳定的问题,我们用阿里云服务器搭建了一个NuGet镜像,目前已上线试运行. 使用NuGet镜像源的方法如下: 1)NuGet镜像源地址:https://nuget. ...

  2. Canvas坐标系转换

    默认坐标系与当前坐标系 canvas中的坐标是从左上角开始的,x轴沿着水平方向(按像素)向右延伸,y轴沿垂直方向向下延伸.左上角坐标为x=0,y=0的点称作原点.在默认坐标系中,每一个点的坐标都是直接 ...

  3. ASP.NET Core应用针对静态文件请求的处理[1]: 以Web的形式发布静态文件

    虽然ASP.NET Core是一款"动态"的Web服务端框架,但是在很多情况下都需要处理针对静态文件的请求,最为常见的就是这对JavaScript脚本文件.CSS样式文件和图片文件 ...

  4. Android 死锁和重入锁

    死锁的定义: 1.一般的死锁 一般的死锁是指多个线程的执行必须同时拥有多个资源,由于不同的线程需要的资源被不同的线程占用,最终导致僵持的状态,这就是一般死锁的定义. package com.cxt.t ...

  5. Kotlin中变量不同于Java: var 对val(KAD 02)

    原文标题:Variables in Kotlin, differences with Java. var vs val (KAD 02) 作者:Antonio Leiva 时间:Nov 28, 201 ...

  6. 【搬砖】安卓入门(1)- Java开发入门

    01.01_计算机基础知识(计算机概述)(了解) A:什么是计算机?计算机在生活中的应用举例 计算机(Computer)全称:电子计算机,俗称电脑.是一种能够按照程序运行,自动.高速处理海量数据的现代 ...

  7. Linux命令

    系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS ...

  8. 巧用 mask-image 实现简单进度加载界面

    最近给 nzoo 折腾官网,拿 angular2.0 + webpack 实现SPA,然后觉得最终打包后的出口文件有点大,用户首次访问会有一个时间较长的白屏等候界面,感觉体验不太好. 于是希望在用户下 ...

  9. 谈一谈Http Request 与 Http Response

    写在前面的话:今天来总结一下http相关的request和response,就从以下几个问题入手吧. ======正文开始======== 1.什么是HTTP Request 与HTTP Respon ...

  10. C#委托使用详解(Delegates)

    摘要 委托是C#编程一个非常重要的概念,也是一个难点.本文将系统详细讲解委托. 1. 委托是什么? 其实,我一直思考如何讲解委托,才能把委托说得更透彻.说实话,每个人都委托都有不同的见解,因为看问题的 ...