Ignite性能测试以及对redis的对比
测试方法
为了对Ignite做一个基本了解,做了一个性能测试,测试方法也比较简单主要是针对client模式,因为这种方法和使用redis的方式特别像。测试方法很简单主要是下面几点:
- 不作参数优化,默认配置进行测试
- 在一台linux服务器上部署Ignite服务端,然后自己的笔记本作客户端
- 按1,10,20,50,100,200线程进行测试
测试环境说明
服务器:
[09:36:56] ver. 1.7.0#20160801-sha1:383273e3
[09:36:56] OS: Linux 2.6.32-279.el6.x86_64 amd64
[09:36:56] VM information: Java(TM) SE Runtime Environment 1.7.0_07-b10 Oracle Corporation Java HotSpot(TM) 64-Bit Server VM 23.3-b01
[09:36:56] Configured plugins:
[09:36:56] ^-- None
[09:36:56]
[09:36:56] Security status [authentication=off, tls/ssl=off]
CPU:4核
内存8GB
网卡100M
虚拟机
客户机:
[13:05:32] ver. 1.7.0#20160801-sha1:383273e3
[13:05:32] OS: Windows 7 6.1 amd64
[13:05:32] VM information: Java(TM) SE Runtime Environment 1.8.0_40-b26 Oracle Corporation Java HotSpot(TM) 64-Bit Server VM 25.40-b25
[13:05:32] Initial heap size is 128MB (should be no less than 512MB, use -Xms512m -Xmx512m).
[13:05:34] Configured plugins:
[13:05:34] ^-- None
[13:05:34]
[13:05:35] Security status [authentication=off, tls/ssl=off]
[13:05:51] Performance suggestions for grid (fix if possible)
[13:05:51] To disable, set -DIGNITE_PERFORMANCE_SUGGESTIONS_DISABLED=true
[13:05:51] ^-- Decrease number of backups (set 'backups' to 0)
CPU:4核,i5-4210u
内存8GB
笔记本win7 64位
网卡:100M
测试代码
package org.j2server.j2cache.cache.iginte;
import java.util.Arrays;
import org.apache.ignite.Ignite;
import org.apache.ignite.IgniteCache;
import org.apache.ignite.Ignition;
import org.apache.ignite.cache.CacheMode;
import org.apache.ignite.configuration.CacheConfiguration;
import org.apache.ignite.configuration.IgniteConfiguration;
import org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi;
import org.apache.ignite.spi.discovery.tcp.ipfinder.vm.TcpDiscoveryVmIpFinder;
public class IgniteTest {
//测试的数据行数
private static final Integer test_rows = 50000;
private static final Integer thread_cnt = 10;
private static final String cacheName = "Ignite Cache";
private static Ignite ignite;
private static boolean client_mode = false;
static {
getIgnite();
}
public static void main(String[] args) {
MultiThread();
}
private static Ignite getIgnite() {
if (ignite == null) {
TcpDiscoverySpi spi = new TcpDiscoverySpi();
TcpDiscoveryVmIpFinder ipFinder = new TcpDiscoveryVmIpFinder();
ipFinder.setAddresses(Arrays.asList("192.168.49.204"));
spi.setIpFinder(ipFinder);
CacheConfiguration cacheConfiguration = new CacheConfiguration<String, DataClass>();
cacheConfiguration.setCacheMode(CacheMode.PARTITIONED);
cacheConfiguration.setBackups(1);
IgniteConfiguration cfg = new IgniteConfiguration();
cfg.setClientMode(client_mode);
cfg.setDiscoverySpi(spi);
cfg.setCacheConfiguration(cacheConfiguration);
ignite = Ignition.start(cfg);
}
System.out.println("是否客户端模式:" + client_mode);
return ignite;
}
private static void MultiThread() {
System.out.println("==================================================================");
System.out.println("开始测试多线程写入[线程数:"+thread_cnt+"]");
Long startTime = System.currentTimeMillis();
Thread[] threads = new Thread[thread_cnt];
Ignite ignite = getIgnite();
IgniteCache<String, DataClass> cache = ignite.getOrCreateCache(cacheName);
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(new TestThread(true, cache));
}
for (int i = 0; i< threads.length; i++) {
threads[i].start();
}
for(Thread thread : threads){
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Long endTime=System.currentTimeMillis(); //获取结束时间
float interval = endTime-startTime == 0 ? 1 : endTime-startTime;
float tpms = (float)test_rows/interval;
System.out.println("程序运行时间: "+ interval+"ms");
System.out.println("每毫秒写入:"+tpms+"条。");
System.out.println("每秒写入:"+tpms*1000+"条。");
System.out.println("==================================================================");
System.out.println("开始测试多线程读取[线程数:"+thread_cnt+"]");
startTime = System.currentTimeMillis();
Thread[] readthreads = new Thread[thread_cnt];
for (int i = 0; i < readthreads.length; i++) {
readthreads[i] = new Thread(new TestThread(false, cache));
}
for (int i = 0; i< readthreads.length; i++) {
readthreads[i].start();
}
for(Thread thread : readthreads){
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
endTime=System.currentTimeMillis(); //获取结束时间
interval = endTime-startTime == 0 ? 1 : endTime-startTime;
tpms = (float)test_rows/interval;
System.out.println("程序运行时间: "+ interval+"ms");
System.out.println("每毫秒读取:"+tpms+"条。");
System.out.println("每秒读取:"+tpms*1000+"条。");
}
static class TestThread implements Runnable {
private boolean readMode = true;
private IgniteCache<String, DataClass> cache;
public TestThread(boolean readMode, IgniteCache<String, DataClass> cache){
this.readMode = readMode;
this.cache = cache;
}
@Override
public void run() {
for (int i = 0; i < test_rows/thread_cnt; i++) {
if (this.readMode) {
cache.get(Integer.toString(i));
} else {
DataClass dc = new DataClass();
dc.setName(Integer.toString(i));
dc.setValue(i);
dc.setStrValue("asdfadsfasfda");
cache.put(Integer.toString(i), dc);
}
}
}
}
}
import java.io.Serializable;
public class DataClass implements Serializable{
private String name;
private long value;
private String strValue;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public long getValue() {
return value;
}
public void setValue(long value) {
this.value = value;
}
public String getStrValue() {
return strValue;
}
public void setStrValue(String strValue) {
this.strValue = strValue;
}
}
测试数据
最终测试的结果还是有点意思,随着线程的增长读写性能大幅提升,但是到了200的时候就开始下降。下面是测试数据:
[12:53:40] Topology snapshot [ver=20, servers=1, clients=1, CPUs=8, heap=2.8GB]
==================================================================
开始测试多线程写入[线程数:1]
程序运行时间: 49066.0ms
每毫秒写入:1.0190356条。
每秒写入:1019.0356条。
==================================================================
开始测试多线程读取[线程数:1]
程序运行时间: 51739.0ms
每毫秒读取:0.966389条。
每秒读取:966.389条。
[12:56:22] Topology snapshot [ver=22, servers=1, clients=1, CPUs=8, heap=2.8GB]
==================================================================
开始测试多线程写入[线程数:10]
程序运行时间: 6215.0ms
每毫秒写入:8.045053条。
每秒写入:8045.0527条。
==================================================================
开始测试多线程读取[线程数:10]
程序运行时间: 6526.0ms
每毫秒读取:7.661661条。
每秒读取:7661.661条。
[12:57:04] Topology snapshot [ver=24, servers=1, clients=1, CPUs=8, heap=2.8GB]
==================================================================
开始测试多线程写入[线程数:20]
程序运行时间: 4353.0ms
每毫秒写入:11.486331条。
每秒写入:11486.331条。
==================================================================
开始测试多线程读取[线程数:20]
程序运行时间: 3768.0ms
每毫秒读取:13.269639条。
每秒读取:13269.639条。
[12:57:34] Topology snapshot [ver=26, servers=1, clients=1, CPUs=8, heap=2.8GB]
==================================================================
开始测试多线程写入[线程数:50]
程序运行时间: 2657.0ms
每毫秒写入:18.818216条。
每秒写入:18818.217条。
==================================================================
开始测试多线程读取[线程数:50]
程序运行时间: 2138.0ms
每毫秒读取:23.386343条。
每秒读取:23386.344条。
[12:58:00] Topology snapshot [ver=28, servers=1, clients=1, CPUs=8, heap=2.8GB]
==================================================================
开始测试多线程写入[线程数:100]
程序运行时间: 2095.0ms
每毫秒写入:23.866348条。
每秒写入:23866.348条。
==================================================================
开始测试多线程读取[线程数:100]
程序运行时间: 1764.0ms
每毫秒读取:28.344671条。
每秒读取:28344.672条。
[12:59:19] Topology snapshot [ver=30, servers=1, clients=1, CPUs=8, heap=2.8GB]
==================================================================
开始测试多线程写入[线程数:200]
程序运行时间: 2333.0ms
每毫秒写入:21.431633条。
每秒写入:21431.633条。
==================================================================
开始测试多线程读取[线程数:200]
程序运行时间: 2049.0ms
每毫秒读取:24.402147条。
每秒读取:24402.146条。
用图形看看比较直观
不使用客户端模式
只不过我发现如果不使用client_mode,也就是都是server模式时写入性能还是很强的,但是读取有点搓。
[14:15:02] Topology snapshot [ver=22, servers=2, clients=0, CPUs=8, heap=2.8GB]
是否客户端模式:false
==================================================================
开始测试多线程写入[线程数:1]
是否客户端模式:false
程序运行时间: 828.0ms
每毫秒写入:60.386475条。
每秒写入:60386.477条。
==================================================================
开始测试多线程读取[线程数:1]
程序运行时间: 28819.0ms
每毫秒读取:1.7349665条。
每秒读取:1734.9666条。
[14:08:55] Topology snapshot [ver=10, servers=2, clients=0, CPUs=8, heap=2.8GB]
是否客户端模式:false
==================================================================
开始测试多线程写入[线程数:10]
是否客户端模式:false
程序运行时间: 813.0ms
每毫秒写入:61.500614条。
每秒写入:61500.613条。
==================================================================
开始测试多线程读取[线程数:10]
程序运行时间: 5965.0ms
每毫秒读取:8.38223条。
每秒读取:8382.2295条。
[14:09:48] Topology snapshot [ver=12, servers=2, clients=0, CPUs=8, heap=2.8GB]
是否客户端模式:false
==================================================================
开始测试多线程写入[线程数:20]
是否客户端模式:false
程序运行时间: 812.0ms
每毫秒写入:61.576355条。
每秒写入:61576.355条。
==================================================================
开始测试多线程读取[线程数:20]
程序运行时间: 5157.0ms
每毫秒读取:9.6955595条。
每秒读取:9695.56条。
[14:10:25] Topology snapshot [ver=14, servers=2, clients=0, CPUs=8, heap=2.8GB]
是否客户端模式:false
==================================================================
开始测试多线程写入[线程数:50]
是否客户端模式:false
程序运行时间: 686.0ms
每毫秒写入:72.8863条。
每秒写入:72886.3条。
==================================================================
开始测试多线程读取[线程数:50]
程序运行时间: 4321.0ms
每毫秒读取:11.571396条。
每秒读取:11571.3955条。
[14:11:01] Topology snapshot [ver=16, servers=2, clients=0, CPUs=8, heap=2.8GB]
是否客户端模式:false
==================================================================
开始测试多线程写入[线程数:100]
是否客户端模式:false
程序运行时间: 830.0ms
每毫秒写入:60.240963条。
每秒写入:60240.965条。
==================================================================
开始测试多线程读取[线程数:100]
程序运行时间: 3963.0ms
每毫秒读取:12.616705条。
每秒读取:12616.705条。
[14:13:58] Topology snapshot [ver=20, servers=2, clients=0, CPUs=8, heap=2.8GB]
是否客户端模式:false
==================================================================
开始测试多线程写入[线程数:200]
是否客户端模式:false
程序运行时间: 1014.0ms
每毫秒写入:49.309666条。
每秒写入:49309.664条。
==================================================================
开始测试多线程读取[线程数:200]
程序运行时间: 3179.0ms
每毫秒读取:15.728216条。
每秒读取:15728.216条。
用图形看看比较直观
从这个数据可以看出来,在这种都是服务端的模式下,写入性能基本稳定,在达到200线程时出现衰减;而读取则基本是线性的,到100线程差不多也就到顶了。
与redis的对比
原本是想和redis作一个对比测试的,先是做了redis的测试。redis客户端用的jedis2.8.1,同时服务端用的是redis3.2.2,其他的环境和上面的一样。
结果测试数据发现redis和ignite使用客户端模式时竟然很相近。所以我怀疑是因为我对redis不了解redis没作优化导致的?但是Ignite我也是直接启动的,一点优化也没作,还是说测试的代码写法不对呢?
下面是redis的测试代码
import redis.clients.jedis.Jedis;
public class redis {
private static final String ip = "192.168.49.200";
private static final String auth = "your pwd";
private static final Integer port = 6379;
//测试的数据行数
private static final Integer test_rows = 50000;
//线程数
private static final Integer thread_cnt = 200;
public static void main(String[] args) {
MultiThread();
}
private static void MultiThread() {
System.out.println("==================================================================");
System.out.println("开始测试多线程写入[线程数:"+thread_cnt+"]");
Long startTime = System.currentTimeMillis();
Thread[] threads = new Thread[thread_cnt];
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(new TestThread(true));
}
for (int i = 0; i< threads.length; i++) {
threads[i].start();
}
for(Thread thread : threads){
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Long endTime=System.currentTimeMillis(); //获取结束时间
float interval = endTime-startTime == 0 ? 1 : endTime-startTime;
float tpms = (float)test_rows/interval;
System.out.println("程序运行时间: "+ interval+"ms");
System.out.println("每毫秒写入:"+tpms+"条。");
System.out.println("每秒写入:"+tpms*1000+"条。");
System.out.println("==================================================================");
System.out.println("开始测试多线程写入[线程数:"+thread_cnt+"]");
startTime = System.currentTimeMillis();
Thread[] readthreads = new Thread[thread_cnt];
for (int i = 0; i < readthreads.length; i++) {
readthreads[i] = new Thread(new TestThread(false));
}
for (int i = 0; i< readthreads.length; i++) {
readthreads[i].start();
}
for(Thread thread : readthreads){
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
endTime=System.currentTimeMillis(); //获取结束时间
interval = endTime-startTime == 0 ? 1 : endTime-startTime;
tpms = (float)test_rows/interval;
System.out.println("程序运行时间: "+ interval+"ms");
System.out.println("每毫秒读取:"+tpms+"条。");
System.out.println("每秒读取:"+tpms*1000+"条。");
}
static class TestThread implements Runnable {
private boolean readMode = true;
public TestThread(boolean readMode){
this.readMode = readMode;
}
@Override
public void run() {
Jedis j = new Jedis(ip,port);
j.auth(auth);
for (int i = 0; i < test_rows/thread_cnt; i++) {
if (this.readMode) {
j.get("foo"+i);
} else {
j.set("foo"+i, "bar"+i);
}
}
j.disconnect();
}
}
}
对比结果视图
结束
原本我想着redis估计得秒了ignite,毕竟redis是这么多系统正在使用的内存数据库。ignite本身含有这么多功能按理性能肯定是比不上才对,而且ignite组成集群后是需要进行数据分块存取和备份的,而测试环境中redis则是单实例情况,这让我没太想明白啊。。还望有高手指点。。
看网上许多人测试的数据redis少点的4万+,据说可以到10万+。但我自己的测试环境差了点反正最多也没过3万,这到底会是什么原因呢?
不管如何这是一次简单的测试与尝试,结果与预期有点偏差,继续学习深入了解吧。
Ignite性能测试以及对redis的对比的更多相关文章
- 性能测试以及对redis
Ignite性能测试以及对redis的对比 测试方法 为了对Ignite做一个基本了解,做了一个性能测试,测试方法也比较简单主要是针对client模式,因为这种方法和使用redis的方式特别像.测 ...
- .NET 环境中使用RabbitMQ RabbitMQ与Redis队列对比 RabbitMQ入门与使用篇
.NET 环境中使用RabbitMQ 在企业应用系统领域,会面对不同系统之间的通信.集成与整合,尤其当面临异构系统时,这种分布式的调用与通信变得越发重要.其次,系统中一般会有很多对实时性要求不高的 ...
- [转帖]TimesTen与Redis的对比
TimesTen与Redis的对比 2017-02-23 17:25:27 dingdingfish 阅读数 3682更多 分类专栏: TimesTen Oracle Redis In-Memory ...
- RabbitMQ与Redis队列对比
本文仅针对RabbitMQ与Redis做队列应用时的情况进行对比具体采用什么方式实现,还需要取决于系统的实际需求 简要介绍 RabbitMQ RabbitMQ是实现AMQP(高级消息队列协议)的消息中 ...
- memcache、redis原理对比
一.问题: 数据库表数据量极大(千万条),要求让服务器更加快速地响应用户的需求. 二.解决方案: 1.通过高速服务器Cache缓存数据库数据 2.内存数据库 ( ...
- mongodb redis memcache 对比
从以下几个维度,对 Redis.memcache.MongoDB 做了对比. 1.性能 都比较高,性能对我们来说应该都不是瓶颈. 总体来讲,TPS 方面 redis 和 memcache 差不多,要大 ...
- php apc缓存以及与redis的对比
apc缓存用户数据这个会用, apc_store() 和apc_fetch()函数. 那apc 缓存php 代码,这个怎么用呢? 原文: http://blog.csdn.net/w187046226 ...
- memcache和redis缓存对比及我为什么选择redis
对比结论 1. 性能上: 性能上都很出色,具体到细节,由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高.而在100k以 ...
- 缓存数据库memcache、redis原理对比
一.问题: 数据库表数据量极大(千万条),要求让服务器更加快速地响应用户的需求. 二.解决方案: 1.通过高速服务器Cache缓存数据库数据 2.内存数据库 (这里 ...
随机推荐
- 开源:ASP.NET Aries 开发框架
前言: 随着岁月的推进,不知不觉已在.NET这领域上战斗了十年了. 青春还没来得急好好感受,却已是步入健忘之秋的老人一枚了. 趁着还有点记忆,得赶紧把硬盘里那私藏的80G除外的东西,和大伙分享分享. ...
- CRC、反码求和校验 原理分析
3月份开始从客户端转后台,算是幸运的进入全栈工程师的修炼阶段.这段时间一边是老项目的客户端加服务器两边的维护和交接,一边是新项目加加加班赶工,期间最长经历了连续工作三天只睡了四五个小时的煎熬,人生也算 ...
- CoreCRM 开发实录——想用国货不容易
昨天(2016年12月29日)发了开始开发的文章.本来晚上准备在 Coding.NET 上添加几个任务开始搞起了.可是真的开始用的时候才发现:Coding.NET 的任务功能只针对私有的任务开放.我想 ...
- Zabbix基本配置及监控主机
监控主机一版需要在被监控的主机上安装Zabbix Agent 监控主机 安装zabbix-agent 首先需要在被监控的主机上安装agent,可以下载预编译好的RPM进行安装,下载地址:http:// ...
- Yeoman 官网教学案例:使用 Yeoman 构建 WebApp
STEP 1:设置开发环境 与yeoman的所有交互都是通过命令行.Mac系统使用terminal.app,Linux系统使用shell,windows系统可以使用cmder/PowerShell/c ...
- 数据的双向绑定 Angular JS
接触AngularJS许了,时常问自己一些问题,如果是我实现它,会在哪些方面选择跟它相同的道路,哪些方面不同.为此,记录了一些思考,给自己回顾,也供他人参考. 初步大致有以下几个方面: 数据双向绑定 ...
- 熊乐:H3 BPM为加速企业流程管理提供源动力
近日,在北京·金隅喜来登酒店,H3 BPM以"让天下没有难用的流程"为主题,正式发布H3 BPM10.0版本.全新的业务流程管理系统在易用性方面大大提升,并且全面支持Java与.N ...
- centos6.5 nginx-1.8.0和ftp搭建图片服务器
一.Nginx的安装步骤 1.Nginx安装环境: gcc: 安装nginx需要先将官网下载的源码进行编译,编译依赖gcc环境,如果没有gcc环境,需要安装gcc:yum install gcc-c+ ...
- linux下配置matlab运行环境(MCR)
在安装好的matlab下有MCR(MatlabCompilerRuntime)在matlab2011/toolbox/compiler/deploy/glnxa64下找到MCRInstaller.zi ...
- 技术笔记:Indy控件发送邮件
工作中有个需求需要发送邮件,因为使用的delphi6,所以自然就选择了indy组件,想想这事挺简单的.实现的过程倒是简单,看着Indy的demo很快就完了,毕竟也不是很复杂的功能. 功能要求: 1.压 ...