pandas之iteration遍历
遍历是众多编程语言中必备的一种操作,比如 Python 语言通过 for 循环来遍历列表结构。那么 Pandas 是如何遍历 Series 和 DataFrame 结构呢?我们应该明确,它们的数据结构类型不同的,遍历的方法必然会存在差异。对于 Series 而言,您可以把它当做一维数组进行遍历操作;而像 DataFrame 这种二维数据表结构,则类似于遍历 Python 字典。
在 Pandas 中同样也是使用 for 循环进行遍历。通过for遍历后,Series 可直接获取相应的 value,而 DataFrame 则会获取列标签。示例如下:
- import pandas as pd
- import numpy as np
- N=20
- df = pd.DataFrame({
- 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
- 'x': np.linspace(0,stop=N-1,num=N),
- 'y': np.random.rand(N),
- 'C': np.random.choice(['Low','Medium','High'],N).tolist(),
- 'D': np.random.normal(100, 10, size=(N)).tolist()
- })
- print(df)
- for col in df:
- print (col)
输出结果:
A
x
y
C
D
内置迭代方法
如果想要遍历 DataFrame 的每一行,我们下列函数:
- 1) iteritems():以键值对 (key,value) 的形式遍历;
- 2) iterrows():以 (row_index,row) 的形式遍历行;
- 3) itertuples():使用已命名元组的方式对行遍历。
下面对上述函数做简单的介绍:
1) iteritems()
以键值对的形式遍历 DataFrame 对象,以列标签为键,以对应列的元素为值。
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3'])
- for key,value in df.iteritems():
- print (key,value)
输出结果:
col1
0 0.561693
1 0.537196
2 0.882564
3 1.063245
Name: col1, dtype: float64
col2
0 -0.115913
1 -0.526211
2 -1.232818
3 -0.313741
Name: col2, dtype: float64
col3
0 0.103138
1 -0.655187
2 -0.101757
3 1.505089
Name: col3, dtype: float64
2) iterrows()
该方法按行遍历,返回一个迭代器,以行索引标签为键,以每一行数据为值。示例如下:
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.randn(3,3),columns = ['col1','col2','col3'])
- print(df)
- for row_index,row in df.iterrows():
- print (row_index,row)
输出结果:
col1 col2 col3
0 -0.319301 0.205636 0.247029
1 0.673788 0.874376 1.286151
2 0.853439 0.543066 -1.759512 0
col1 -0.319301
col2 0.205636
col3 0.247029
Name: 0, dtype: float64
1
col1 0.673788
col2 0.874376
col3 1.286151
Name: 1, dtype: float64
2
col1 0.853439
col2 0.543066
col3 -1.759512
Name: 2, dtype: float64
注意:iterrows() 遍历行,其中 0,1,2 是行索引而 col1,col2,col3 是列索引。
3) itertuples
itertuples() 同样将返回一个迭代器,该方法会把 DataFrame 的每一行生成一个元组,示例如下:
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.rand(3,3),columns = ['c1','c2','c3'])
- for row in df.itertuples():
- print(row)
输出结果:
Pandas(Index=0, c1=0.253902385555437, c2=0.9846386610838339, c3=0.8814786409138894)
Pandas(Index=1, c1=0.018667367298908943, c2=0.5954745800963542, c3=0.04614488622991075)
Pandas(Index=2, c1=0.3066297875412092, c2=0.17984210928723543, c3=0.8573031941082285)
迭代返回副本
迭代器返回的是原对象的副本,所以,如果在迭代过程中修改元素值,不会影响原对象,这一点需要大家注意。
看一组简单的示例:
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.randn(3,3),columns = ['col1','col2','col3'])
- for index, row in df.iterrows():
- row['a'] = 15
- print (df)
输出结果:
col1 col2 col3
0 1.601068 -0.098414 -1.744270
1 -0.432969 -0.233424 0.340330
2 -0.062910 1.413592 0.066311
由上述示例可见,原对象df没有受到任何影响。
pandas之iteration遍历的更多相关文章
- Pandas 中的遍历与并行处理
使用 pandas 处理数据时,遍历和并行处理是比较常见的操作了本文总结了几种不同样式的操作和并行处理方法. 1. 准备示例数据 import pandas as pd import numpy as ...
- pandas中的遍历方式速度对比
对一个20667行的xlsx文件进行遍历测试 import pandas as pd # 定义一个计算执行时间的函数作装饰器,传入参数为装饰的函数或方法 def print_execute_time( ...
- pandas的札记
导入导出数据 在导入,导出DataFrame数据时,会用到各种格式,分为 to_csv ;to_excel;to_hdf;to_sql;to_json;to_msgpack ;to_html;to_g ...
- 图的存储结构:邻接矩阵(邻接表)&链式前向星
[概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...
- doT.js——前端javascript模板引擎问题备忘录
我手里维护的一个项目,遇到一个问题:原项目的开发人员在Javascript中,大量的拼接HTML,导致代码极丑,极难维护.他们怎么能够忍受的了这么丑陋.拙劣的代码呢,也许是他们的忍受力极强,压根就没想 ...
- python笔记:#013#高级变量类型
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
- java代码之美(5)---guava之Multiset
guava之Multiset 一.概述 Guava提供了一个新集合类型Multiset,它可以多次添加相等的元素,且和元素顺序无关.Multiset继承于JDK的Cllection接口,而不是Set接 ...
- python基础自学 第五天(附带视频和相关资源)
数据类型 01.列表 List 是 python 中使用最频繁的数据类型,在其他语言中叫做数组 专门用于存储一串信息 列表用 [ ] 定义,数据之间用 , 分隔 列表的索引从 0 开始 补:索引就是数 ...
- Python中的高级变量类型
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
- Python中高级变量类型(列表,元组,字典,字符串,公共方法...)
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
随机推荐
- https://计算机四级
计算机四级内容: 一,网络工程师 基本要求 1.了解大型网络系统规划.管理方法: 2.具备中小型网络系统规划.设计的基本能力: 3.掌握中小型网络系统组建.设备配置调试的基本技术: 4.掌握企事业单位 ...
- ESP32(WeMos D1 R32)开发资料
1.乐鑫官网 2.ESP32踩坑 ESP32控制摇杆,定义sw的引脚时一定要设置为上拉才行. 3.ESP32入门之arduino IDE环境搭建 4.ESP32 MicroPython编程官网文档 E ...
- Linux_Tomcat实战
Tomcat实战 tomcat简述 tomcat安装 部署jspgou项目 tomcat简述 Tomcat 服务器是一个免费的开放源代码的Web 应用服务器,Tomcat是Apache 软件基金会(A ...
- elasticsearch的Kibana基本操作
幂等(idempotent.idempotence)是一个数学与计算机学概念,常见于抽象代数中. 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同.幂等函数,或幂等方法,是 ...
- swing编程
在界面中放入图片:路径以项目路径为准 img包一般放在项目文件夹下 package adapter;import java.awt.Color;import java.awt.Dimension;i ...
- JAVA - 判断两个浮点数相等
JAVA - 判断两个浮点数相等 背景知识 float型和double型是JAVA的基本类型,用于浮点数表示,在JAVA中float型占4个字节32位,double型占8个字节64位,一般比较适合用于 ...
- CF1272 C Yet Another Broken Keyboard 题解+代码比对
C. Yet Another Broken Keyboard time limit per test 2 seconds memory limit per test 256 megabytes inp ...
- pintia 3-7-5 逆波兰表达式求值 (20 分)
3-7-5 逆波兰表达式求值 (20 分) 逆波兰表示法是一种将运算符(operator)写在操作数(operand)后面 的描述程序(算式)的方法.举个例子,我们平常用中缀表示法描述的算式(1 + ...
- Java工程结构 应用分层
(一) 应用分层 1. [推荐]图中默认上层依赖于下层,箭头关系表示可直接依赖,如:开放接口层可以依赖于 Web 层,也可以直接依赖于 Service 层,依此类推: • 开放接口层:可直接封装 Se ...
- Exception processing template "index": An error happened during template rendering
问题所在 brandList[0].brandId出错,要不就改正,要不就把他删了,注释也会报错.