[WC2018]州区划分(FWT,FST)
[WC2018]州区划分(FWT,FST)
题解时间
经典FST。
在此之前似乎用到FST的题并不多?
首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可。
考虑朴素状压dp很容易得到 $ f_{ S } = \sum\limits_{ T \subseteq S } f_{ S - T } \times ( \frac{ val_{ T } }{ val_{ S } } )^{p} $ 。
直接dp时间复杂度 $ 3^{ N } $ 当场去世。
但由于是经典的子集运算,考虑FST。
就是将数组加一维,只有1的个数对应的一维的该位才有值。
这样就能保证产生贡献的集合对不相交。
预处理好 $ val_{ S }^{ p } $ 记作 $ g_{S} $ ,并将其加一维用于FST。
方程变为 $ f[i][S] = \sum\limits_{ j = 1 }^{i}\sum\limits_{ T \subseteq S }\frac{ f[j][T] \times g[i-j][S-T] }{ val_{ S }^{ p } } $ 。
预处理欧拉回路和dp过程都是 $ n^{2} \times \log n $ 。
#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int S=1<<21,N=22;
const int mo=998244353;
void doadd(lint &a,lint b){if((a+=b)>=mo) a-=mo;}
int bcnt(int x){return __builtin_popcount(x);}
int lbit(int x){return __builtin_ffs(x);}
int inv[5011];void init(){inv[0]=inv[1]=1;for(int i=2;i<=5000;i++) inv[i]=1ll*inv[mo%i]*(mo-mo/i)%mo;}
int n,m,tp,w[N],mp[N][N];
lint dp[N][S],dg[S];
lint f[S],g[N][S];//城市集合的\sum w,fst为了防止重复要按照1的个数分层
int fa[N];int find(int x){return fa[x]==fa[fa[x]]?fa[x]:fa[x]=find(fa[x]);}
int deg[N],lst[N],ln;
int check(int s)
{
ln=0;for(int i=1;i<=n;i++)if((s>>i-1)&1) fa[i]=i,deg[i]=0,lst[++ln]=i;
for(int i=1;i<=ln;i++)for(int j=i+1;j<=ln;j++)if(mp[lst[i]][lst[j]])
deg[lst[i]]++,deg[lst[j]]++,fa[find(lst[i])]=find(lst[j]);
for(int i=1;i<=ln;i++)if(find(lst[i])!=find(lst[1])||(deg[lst[i]]&1)) return 1;
return 0;
}
void fwtor(lint *a,int len,int tp)
{
for(int i=1;i<len;i<<=1)
for(int j=0;j<len;j+=i<<1)
for(int k=0;k<i;++k)
doadd(a[j+k+i],~tp?a[j+k]:mo-a[j+k]);
}
lint cal(lint x)
{
if(tp==0) return 1;
else if(tp==1) return x;
else return x*x%mo;
}
int main()
{
init();read(n),read(m),read(tp);int ful=1<<n;
for(int i=1,x,y;i<=m;i++) read(x),read(y),mp[x][y]=mp[y][x]=1;
for(int i=1;i<=n;i++) read(w[i]);
for(int s=1;s<ful;s++) f[s]=w[lbit(s)]+f[s^(s&-s)],g[bcnt(s)][s]=check(s)*cal(f[s]);
for(int i=1;i<=n;i++) fwtor(g[i],ful,1);
dp[0][0]=dg[0]=1;
for(int i=0;i<n;i++)
{
if(i) fwtor(dp[i],ful,-1);
for(int s=0;s<ful;s++)
dg[s]=(i==bcnt(s))?dp[i][s]*cal(inv[f[s]])%mo:0ll;
fwtor(dg,ful,1);
for(int j=1;i+j<=n;j++)for(int s=0;s<ful;s++)
doadd(dp[i+j][s],dg[s]*g[j][s]%mo);
}
fwtor(dp[n],ful,-1);
printf("%lld\n",dp[n][ful-1]*cal(inv[f[ful-1]])%mo);
return 0;
}
}
int main(){return RKK::main();}
[WC2018]州区划分(FWT,FST)的更多相关文章
- [WC2018]州区划分——FWT+DP+FST
题目链接: [WC2018]州区划分 题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路.对于一种划分方案,第i个部分的 ...
- [WC2018]州区划分(FWT)
题目描述 题解 这道题的思路感觉很妙. 题目中有一个很奇怪的不合法条件,貌似和后面做题没有什么关系,所以我们先得搞掉它. 也就是判断一个点集是否合法,也就是判断这个点集是否存在欧拉回路. 如果存在欧拉 ...
- [WC2018]州区划分
[WC2018]州区划分 注意审题: 1.有序选择 2.若干个州 3.贡献是州满意度的乘积 枚举最后一个州是哪一个,合法时候贡献sum[s]^p,否则贡献0 存在欧拉回路:每个点都是偶度数,且图连通( ...
- [UOJ#348][WC2018]州区划分
[UOJ#348][WC2018]州区划分 试题描述 小 \(S\) 现在拥有 \(n\) 座城市,第ii座城市的人口为 \(w_i\),城市与城市之间可能有双向道路相连. 现在小 \(S\) 要将这 ...
- P4221 [WC2018]州区划分 无向图欧拉回路 FST FWT
LINK:州区划分 把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路. 充要条件有两个 联通 每个点度数为偶数. 预处理出所有状态. 然后设\(f_i\)表示组成情况为i的 ...
- Luogu4221 WC2018州区划分(状压dp+FWT)
合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方 ...
- [WC2018]州区划分(状压DP+FWT/FMT)
很裸的子集反演模板题,套上一些莫名其妙的外衣. 先预处理每个集合是否合法,再作显然的状压DP.然后发现可以写成子集反演的形式,直接套模板即可. 子集反演可以看这里. 子集反演的过程就是多设一维代表集合 ...
- uoj#348/洛谷P4221 [WC2018]州区划分(FWT)
传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷 ...
- 【Luogu4221】[WC2018] 州区划分
题目链接 题目描述 略 Sol 一个州合法就是州内点形成的子图中 不存在欧拉回路(一个点也算欧拉回路). 这个东西显然就状压 dp 一下: 设 \(f[S]\) 表示当前考虑了 \(S\) 这个集合内 ...
随机推荐
- 「Python实用秘技05」在Python中妙用短路机制
本文完整示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/PythonPracticalSkills 这是我的系列文章「Python实用秘技」的第5期 ...
- Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集. \(n,m\le10^5 ...
- c++ 指针数组与指向数组的指针
指针数组与指向数组的指针 1.int (*a)[10]-->指向数组的指针 a是一个二级指针,可认为是一个二维数组的首地址,指向一个一维数组,数组存储了10个int数据. int arr1[10 ...
- Asp.net core IdentityServer4与传统基于角色的权限系统的集成
写在前面 因为最近在忙别的,好久没水文了 今天来水一篇: 在学习或者做权限系统技术选型的过程中,经常有朋友有这样的疑问 : "IdentityServer4的能不能做到与传统基于角色的权限系 ...
- transient关键字有何作用
使用对象流保存对象时,将对象的全部信息都保存了,但是有些信息是不希望保存,如密码,该如何避免该信息的保存? 使用transient关键字修饰的属性,在保存对象时,该属性并不会被保存. transien ...
- 自定义表链 SnakList
两种方式实现表链:第二种性能差 using System; using System.Collections; namespace Galaxy { class Program { static vo ...
- WPF中ComboBox控件的SelectedItem和SelectedValue的MVVM绑定
问题描述:左侧是一个ListView控件,用于显示User类的Name属性,右侧显示其SelectedItem的其他属性,包括Age, Address,和Category.其中Category用Com ...
- c++ stringstream 实现字符串与int之间的转换
#include <iostream> #include <sstream> using namespace std; int main() { //string转int st ...
- MySQL 学习笔记(一)MySQL 事务的ACID特性
MySQL事务是什么,它就是一组数据库的操作,是访问数据库的程序单元,事务中可能包含一个或者多个 SQL 语句.这些SQL 语句要么都执行.要么都不执行.我们知道,在MySQL 中,有不同的存储引擎, ...
- MySQL第三讲
昨日内容回顾 公钥私钥 数据库存储引擎 MyISAM 是5.5版本之前默认的存储引擎 存取数据的速度较快.但是安全性偏差 三个文件 结构.索引.数据 InnoDB 5.5版本及之后默认的存储引擎 存取 ...