接上篇Sentinel集群限流探索,上次简单提到了集群限流的原理,然后用官方给的 demo 简单修改了一下,可以正常运行生效。

这一次需要更进一步,基于 Sentinel 实现内嵌式集群限流的高可用方案,并且包装成一个中间件 starter 提供给三方使用。

对于高可用,我们主要需要解决两个问题,这无论是使用内嵌或者独立模式都需要解决的问题,相比而言,内嵌式模式更简单一点。

  1. 集群 server 自动选举
  2. 自动故障转移
  3. Sentinel-Dashboard持久化到Apollo

集群限流

首先,考虑到大部分的服务可能都不需要集群限流这个功能,因此实现一个注解用于手动开启集群限流模式,只有开启注解的情况下,才去实例化集群限流的 Bean 和限流数据。

@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Import({EnableClusterImportSelector.class})
@Documented
public @interface SentinelCluster {
} public class EnableClusterImportSelector implements DeferredImportSelector {
@Override
public String[] selectImports(AnnotationMetadata annotationMetadata) {
return new String[]{ClusterConfiguration.class.getName()};
}
}

这样写好之后,当扫描到有我们的 SentinelCluster 注解的时候,就会去实例化 ClusterConfiguration

@Slf4j
public class ClusterConfiguration implements BeanDefinitionRegistryPostProcessor, EnvironmentAware {
private Environment environment; @Override
public void postProcessBeanDefinitionRegistry(BeanDefinitionRegistry registry) throws BeansException {
BeanDefinitionBuilder beanDefinitionBuilder = BeanDefinitionBuilder.genericBeanDefinition(ClusterManager.class);
beanDefinitionBuilder.addConstructorArgValue(this.environment);
registry.registerBeanDefinition("clusterManager", beanDefinitionBuilder.getBeanDefinition());
} @Override
public void postProcessBeanFactory(ConfigurableListableBeanFactory beanFactory) throws BeansException { } @Override
public void setEnvironment(Environment environment) {
this.environment = environment;
}
}

在配置中去实例化用于管理集群限流的ClusterManager,这段逻辑和我们之前文章中使用到的一般无二,注册到ApolloDataSource之后自动监听Apollo的变化达到动态生效的效果。

@Slf4j
public class ClusterManager {
private Environment environment;
private String namespace;
private static final String CLUSTER_SERVER_KEY = "sentinel.cluster.server"; //服务集群配置
private static final String DEFAULT_RULE_VALUE = "[]"; //集群默认规则
private static final String FLOW_RULE_KEY = "sentinel.flow.rules"; //限流规则
private static final String DEGRADE_RULE_KEY = "sentinel.degrade.rules"; //降级规则
private static final String PARAM_FLOW_RULE_KEY = "sentinel.param.rules"; //热点限流规则
private static final String CLUSTER_CLIENT_CONFIG_KEY = "sentinel.client.config"; //客户端配置 public ClusterManager(Environment environment) {
this.environment = environment;
this.namespace = "YourNamespace";
init();
} private void init() {
initClientConfig();
initClientServerAssign();
registerRuleSupplier();
initServerTransportConfig();
initState();
} private void initClientConfig() {
ReadableDataSource<String, ClusterClientConfig> clientConfigDs = new ApolloDataSource<>(
namespace,
CLUSTER_CLIENT_CONFIG_KEY,
DEFAULT_SERVER_VALUE,
source -> JacksonUtil.from(source, ClusterClientConfig.class)
);
ClusterClientConfigManager.registerClientConfigProperty(clientConfigDs.getProperty());
} private void initClientServerAssign() {
ReadableDataSource<String, ClusterClientAssignConfig> clientAssignDs = new ApolloDataSource<>(
namespace,
CLUSTER_SERVER_KEY,
DEFAULT_SERVER_VALUE,
new ServerAssignConverter(environment)
);
ClusterClientConfigManager.registerServerAssignProperty(clientAssignDs.getProperty());
} private void registerRuleSupplier() {
ClusterFlowRuleManager.setPropertySupplier(ns -> {
ReadableDataSource<String, List<FlowRule>> ds = new ApolloDataSource<>(
namespace,
FLOW_RULE_KEY,
DEFAULT_RULE_VALUE,
source -> JacksonUtil.fromList(source, FlowRule.class));
return ds.getProperty();
});
ClusterParamFlowRuleManager.setPropertySupplier(ns -> {
ReadableDataSource<String, List<ParamFlowRule>> ds = new ApolloDataSource<>(
namespace,
PARAM_FLOW_RULE_KEY,
DEFAULT_RULE_VALUE,
source -> JacksonUtil.fromList(source, ParamFlowRule.class)
);
return ds.getProperty();
});
} private void initServerTransportConfig() {
ReadableDataSource<String, ServerTransportConfig> serverTransportDs = new ApolloDataSource<>(
namespace,
CLUSTER_SERVER_KEY,
DEFAULT_SERVER_VALUE,
new ServerTransportConverter(environment)
); ClusterServerConfigManager.registerServerTransportProperty(serverTransportDs.getProperty());
} private void initState() {
ReadableDataSource<String, Integer> clusterModeDs = new ApolloDataSource<>(
namespace,
CLUSTER_SERVER_KEY,
DEFAULT_SERVER_VALUE,
new ServerStateConverter(environment)
); ClusterStateManager.registerProperty(clusterModeDs.getProperty());
}
}

这样的话,一个集群限流的基本功能已经差不多是OK了,上述步骤都比较简单,按照官方文档基本都能跑起来,接下来要实现文章开头提及到的核心的几个功能了。

自动选举&故障转移

自动选举怎么实现?简单点,不用考虑那么多,每台机器启动成功之后直接写入到 Apollo 当中,第一个写入成功的就是 Server 节点。

这个过程为了保证并发带来的问题,我们需要加锁确保只有一台机器成功写入自己的本机信息。

由于我使用 Eureka 作为注册中心,Eureka 又有CacheRefreshedEvent本地缓存刷新的事件,基于此每当本地缓存刷新,我们就去检测当前 Server 节点是否存在,然后根据实际情况去实现选举。

首先在 spring.factories 中添加我们的监听器。

org.springframework.boot.autoconfigure.EnableAutoConfiguration=com.test.config.SentinelEurekaEventListener

监听器只有当开启了集群限流注解SentinelCluster之后才会生效。

@Configuration
@Slf4j
@ConditionalOnBean(annotation = SentinelCluster.class)
public class SentinelEurekaEventListener implements ApplicationListener<CacheRefreshedEvent> {
@Resource
private DiscoveryClient discoveryClient;
@Resource
private Environment environment;
@Resource
private ApolloManager apolloManager; @Override
public void onApplicationEvent(EurekaClientLocalCacheRefreshedEvent event) {
if (!leaderAlive(loadEureka(), loadApollo())) {
boolean tryLockResult = redis.lock; //redis或者其他加分布式锁
if (tryLockResult) {
try {
flush();
} catch (Exception e) {
} finally {
unlock();
}
}
}
} private boolean leaderAlive(List<ClusterGroup> eurekaList, ClusterGroup server) {
if (Objects.isNull(server)) {
return false;
}
for (ClusterGroup clusterGroup : eurekaList) {
if (clusterGroup.getMachineId().equals(server.getMachineId())) {
return true;
}
}
return false;
}
}

OK,其实看到代码已经知道我们把故障转移的逻辑也实现了,其实道理是一样的。

第一次启动的时候 Apollo 中的 server 信息是空的,所以第一台加锁写入的机器就是 server 节点,后续如果 server 宕机下线,本地注册表缓存刷新,对比 Eureka 的实例信息和 Apollo 中的 server,如果 server 不存在,那么就重新执行选举的逻辑。

需要注意的是,本地缓存刷新的时间极端情况下可能会达到几分钟级别,那么也就是说在服务下线的可能几分钟内没有重新选举出新的 server 节点整个集群限流是不可用的状态,对于业务要求非常严格的情况这个方案就不太适用了。

对于 Eureka 缓存时间同步的问题,可以参考之前的文章Eureka服务下线太慢,电话被告警打爆了

Dashboard持久化改造

到这儿为止,我们已经把高可用方案实现好了,接下来最后一步,只要通过 Sentinel 自带的控制台能够把配置写入到 Apollo 中,那么应用就自然会监听到配置的变化,达到动态生效的效果。

根据官方的描述,官方已经实现了FlowControllerV2用于集群限流,同时在测试目录下有简单的案例帮助我们快速实现控制台的持久化的逻辑。

我们只要实现DynamicRuleProvider,同时注入到Controller中使用即可,这里我们实现flowRuleApolloProvider用于提供从Apollo查询数据,flowRuleApolloPublisher用于写入限流配置到Apollo。

@RestController
@RequestMapping(value = "/v2/flow")
public class FlowControllerV2 {
private final Logger logger = LoggerFactory.getLogger(FlowControllerV2.class); @Autowired
private InMemoryRuleRepositoryAdapter<FlowRuleEntity> repository; @Autowired
@Qualifier("flowRuleApolloProvider")
private DynamicRuleProvider<List<FlowRuleEntity>> ruleProvider;
@Autowired
@Qualifier("flowRuleApolloPublisher")
private DynamicRulePublisher<List<FlowRuleEntity>> rulePublisher; }

实现方式很简单,provider 通过 Apollo 的 open-api 从 namespace 中读取配置,publisher 则是通过 open-api 写入规则。

@Component("flowRuleApolloProvider")
public class FlowRuleApolloProvider implements DynamicRuleProvider<List<FlowRuleEntity>> { @Autowired
private ApolloManager apolloManager;
@Autowired
private Converter<String, List<FlowRuleEntity>> converter; @Override
public List<FlowRuleEntity> getRules(String appName) {
String rules = apolloManager.loadNamespaceRuleList(appName, ApolloManager.FLOW_RULES_KEY); if (StringUtil.isEmpty(rules)) {
return new ArrayList<>();
}
return converter.convert(rules);
}
} @Component("flowRuleApolloPublisher")
public class FlowRuleApolloPublisher implements DynamicRulePublisher<List<FlowRuleEntity>> { @Autowired
private ApolloManager apolloManager;
@Autowired
private Converter<List<FlowRuleEntity>, String> converter; @Override
public void publish(String app, List<FlowRuleEntity> rules) {
AssertUtil.notEmpty(app, "app name cannot be empty");
if (rules == null) {
return;
}
apolloManager.writeAndPublish(app, ApolloManager.FLOW_RULES_KEY, converter.convert(rules));
}
}

ApolloManager实现了通过open-api查询和写入配置的能力,使用需要自行配置 Apollo Portal 地址和 token,这里不赘述,可以自行查看 Apollo 的官方文档。

@Component
public class ApolloManager {
private static final String APOLLO_USERNAME = "apollo";
public static final String FLOW_RULES_KEY = "sentinel.flow.rules";
public static final String DEGRADE_RULES_KEY = "sentinel.degrade.rules";
public static final String PARAM_FLOW_RULES_KEY = "sentinel.param.rules";
public static final String APP_NAME = "YourAppName"; @Value("${apollo.portal.url}")
private String portalUrl;
@Value("${apollo.portal.token}")
private String portalToken;
private String apolloEnv;
private String apolloCluster = "default";
private ApolloOpenApiClient client; @PostConstruct
public void init() {
this.client = ApolloOpenApiClient.newBuilder()
.withPortalUrl(portalUrl)
.withToken(portalToken)
.build();
this.apolloEnv = "default";
} public String loadNamespaceRuleList(String appName, String ruleKey) {
OpenNamespaceDTO openNamespaceDTO = client.getNamespace(APP_NAME, apolloEnv, apolloCluster, "default");
return openNamespaceDTO
.getItems()
.stream()
.filter(p -> p.getKey().equals(ruleKey))
.map(OpenItemDTO::getValue)
.findFirst()
.orElse("");
} public void writeAndPublish(String appName, String ruleKey, String value) {
OpenItemDTO openItemDTO = new OpenItemDTO();
openItemDTO.setKey(ruleKey);
openItemDTO.setValue(value);
openItemDTO.setComment("Add Sentinel Config");
openItemDTO.setDataChangeCreatedBy(APOLLO_USERNAME);
openItemDTO.setDataChangeLastModifiedBy(APOLLO_USERNAME);
client.createOrUpdateItem(APP_NAME, apolloEnv, apolloCluster, "default", openItemDTO); NamespaceReleaseDTO namespaceReleaseDTO = new NamespaceReleaseDTO();
namespaceReleaseDTO.setEmergencyPublish(true);
namespaceReleaseDTO.setReleasedBy(APOLLO_USERNAME);
namespaceReleaseDTO.setReleaseTitle("Add Sentinel Config Release");
client.publishNamespace(APP_NAME, apolloEnv, apolloCluster, "default", namespaceReleaseDTO);
} }

对于其他规则,比如降级、热点限流都可以参考此方式去修改,当然控制台要做的修改肯定不是这一点点,比如集群的flowId默认使用的单机自增,这个肯定需要修改,还有页面的传参、查询路由的修改等等,比较繁琐,就不在此赘述了,总归也就是工作量的问题。

好了,本期内容就这些,我是艾小仙,我们下期见。

从-99打造Sentinel高可用集群限流中间件的更多相关文章

  1. 打造kubernetes 高可用集群(nginx+keepalived)

    一.添加master 部署高可用k8s架构 1.拷贝/opt/kubernetes目录到新的master上(注意如果新机上部署了etcd要排除掉) scp -r /opt/kubernetes/ ro ...

  2. sentinel监控redis高可用集群(一)

    一.首先配置redis的主从同步集群. 1.主库的配置文件不用修改,从库的配置文件只需增加一行,说明主库的IP端口.如果需要验证的,也要加多一行,认证密码. slaveof 192.168.20.26 ...

  3. (六) Docker 部署 Redis 高可用集群 (sentinel 哨兵模式)

    参考并感谢 官方文档 https://hub.docker.com/_/redis GitHub https://github.com/antirez/redis happyJared https:/ ...

  4. 【转】harbor仓库高可用集群部署说明

    之前介绍Harbor私有仓库的安装和使用,这里重点说下Harbor高可用集群方案的部署,目前主要有两种主流的Harbor高可用集群方案:1)双主复制:2)多harbor实例共享后端存储. 一.Harb ...

  5. LVS+Keepalived实现高可用集群

    LVS+Keepalived实现高可用集群来源: ChinaUnix博客 日期: 2009.07.21 14:49 (共有条评论) 我要评论 操作系统平台:CentOS5.2软件:LVS+keepal ...

  6. linux高可用集群(HA)原理详解(转载)

    一.什么是高可用集群 高可用集群就是当某一个节点或服务器发生故障时,另一个 节点能够自动且立即向外提供服务,即将有故障节点上的资源转移到另一个节点上去,这样另一个节点有了资源既可以向外提供服务.高可用 ...

  7. activemq+Zookeper高可用集群方案配置

    在高并发.对稳定性要求极高的系统中,高可用的是必不可少的,当然ActiveMQ也有自己的集群方案.从ActiveMQ 5.9开始,ActiveMQ的集群实现方式取消了传统的Master-Slave方式 ...

  8. Centos7.5基于MySQL5.7的 InnoDB Cluster 多节点高可用集群环境部署记录

    一.   MySQL InnoDB Cluster 介绍MySQL的高可用架构无论是社区还是官方,一直在技术上进行探索,这么多年提出了多种解决方案,比如MMM, MHA, NDB Cluster, G ...

  9. LVS-Keepalived高可用集群(NAT)

    LEA-6-LVS-NAT+Keepalived高可用集群-------client-----------------主LVS-----------------从LVS---------------- ...

随机推荐

  1. arts-week11

    Algorithm 69. Sqrt(x) - LeetCode Review Building a network attached storage device with a Raspberry ...

  2. linux篇-新建svn仓库

    1昨天需要在服务器上新建一个仓库,解决方法是把已有的仓库拷贝出来,库删除在放进去 2然后今天想看看有没有命令的方法 find / -name project 首先查看一下项目的位置 3创建仓库 svn ...

  3. vue2 使用 swiper 轮播图效果

    第一步.先安装swiper插件 npm install swiper@3.4.1 --save-dev 第二步.组件内引入swiper插件 import Swiper from 'swiper' im ...

  4. Python实现将csv文件转化为html文件

    核心技术: Pandas 需要转化的csv文件(business.csv): 源代码: import pandas as pd f=pd.read_csv("business.csv&quo ...

  5. debconf-utils-交互式安装时预配置

    debconf-utils是一个可以在Ubuntu下预先配置要安装程序的小工具,它可以避免在安装一个DEB程序时的弹窗输入问题,这可能在编写一键部署脚本的时候非常有用. 以下我们用安装MySQL-AP ...

  6. Fail2ban 命令详解 fail2ban-server

    Fail2ban的服务端操作命令,用于启动一个Fail2ban服务. root@local:~# fail2ban-server --help Usage: /usr/bin/fail2ban-ser ...

  7. AMS 新闻视频广告的云原生容器化之路

    作者 卓晓光,腾讯广告高级开发工程师,负责新闻视频广告整体后台架构设计,有十余年高性能高可用海量后台服务开发和实践经验.目前正带领团队完成云原生技术栈的全面转型. 吴文祺,腾讯广告开发工程师,负责新闻 ...

  8. 【Azure Developer】App Service + PubSub +JS 实现多人版黑客帝国文字流效果图

    需要描述 1)实现黑客帝国文字流效果图,JS功能 2)部署在云中,让大家都可以访问,App Service实现 3)大家都能发送消息,并显示在文字流中,PubSub(websocket)实现 终极效果 ...

  9. 博弈论(nim游戏,SG函数)

    说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里 ...

  10. Redis分布式锁实现Redisson 15问

    大家好,我是三友. 在一个分布式系统中,由于涉及到多个实例同时对同一个资源加锁的问题,像传统的synchronized.ReentrantLock等单进程情况加锁的api就不再适用,需要使用分布式锁来 ...