题目链接

简要题意:

给你一个\(N\)个节点的树,求一个\(1\cdots N\)的排列\((p_1,p_2,\cdots p_N)\) ,使得\(\sum dist(i,p_i)\)最大。

求这样的排列的个数。答案对\(10^9+7\)取模。

分析

先考虑怎么构造出 \(\sum dist(i,p_i)\) 最大的 \(p\) 。

先取出一条边,把它断开,使得原树分成两个部分 \(S_1\) 和 \(S_2\) 。

在最多的情况下,每一个都会走到另一个集合,所以路过切断边的次数是 \(2\times\min\{|S_1|,|S_2|\}\) 。

现在取出当前树的重心,至于为什么是重心:

考虑对于每一条边的贡献,及是之前讲的 \(2\times\min\{|S_1|,|S_2|\}\) ,我们要让贡献最大,显然要让 \(|S_1|\) 和 \(|S_2|\) 尽可能平衡。

自然而然就可以想到重心。

我们设当前子树为 \(S\) ,对于子树内的节点 \(u\) 可以得到最大的构造方案是:

\[\forall u\in S,p_u\notin S
\]

接下来考虑容斥求方案数。

我们设 \(f_i\) 表示有 \(i\) 个数不满足条件,其他随便选的方案数。

那么:

\[Ans = \sum_{i=0}^n(-1)^if_i(n-i)!
\]

至于为什么有 \((n-i)!\) 是因为剩下的随便排列都是可以的。

我们考虑每一个与 \(\text{root}\) 连边的子树,设其大小为 \(\text{size}\) 。

可以得到这个子树中

\[f_i=C_{\text{size}}^i\prod_{j=size-i+1}^jj
\]

也是比较好理解的,小学乘法原理即可。

最后背包一下,具体可看代码。

#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm> #define file(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout) #define Enter putchar('\n')
#define quad putchar(' ') #define int long long
const int N = 5005;
const int mod = 1e9 + 7; int n, siz[N], w[N], root, fac[N], f[N], ans, inv[N];
std::vector <int> dis[N]; inline int power(int a, int n);
inline int C(int n, int m);
inline void get_root(int now, int father);
inline void dfs(int now, int father); signed main(void) {
// file("AT3728");
f[0] = 1; fac[0] = 1; inv[0] = 1;
std::cin >> n;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % mod;
inv[n] = power(fac[n], mod - 2);
for (int i = n - 1; i >= 1; i--)
inv[i] = inv[i + 1] * (i + 1) % mod;
for (int i = 1, x, y; i < n; i++) {
scanf("%lld %lld", &x, &y);
dis[x].emplace_back(y);
dis[y].emplace_back(x);
}
get_root(1, 0);
memset(siz, 0, sizeof(siz));
dfs(root, 0);
for (int t : dis[root]) {
int x = siz[t];
for (int j = n; j >= 0; j--) {
for (int k = 1; k <= std::min(j, x); k++) {
int mul = C(x, k) * fac[x] % mod * inv[x - k] % mod;
f[j] = (f[j] + f[j - k] * mul % mod) % mod;
}
}
}
for (int i = 0; i <= n; i++) {
int flag = 1, num;
if (i % 2 == 1) flag = -1;
num = f[i] * fac[n - i] % mod;
ans = ans + flag * num;
ans = (ans % mod + mod) % mod;
}
std::cout << ans << std::endl;
return 0;
} inline int power(int a, int n) {
int ret = 1;
while (n) {
if (n & 1) ret = ret * a % mod;
a = a * a % mod;
n /= 2;
}
return ret;
}
inline int C(int n, int m) {
if (n < m) return 0;
int ret = fac[n];
ret = ret * inv[m] % mod;
ret = ret * inv[n - m] % mod;
return ret;
}
inline void get_root(int now, int father) {
siz[now] = 1; w[now] = 0;
for (int t : dis[now]) {
if (t == father) continue;
get_root(t, now);
siz[now] += siz[t];
w[now] = std::max(w[now], siz[t]);
}
w[now] = std::max(w[now], n - siz[now]);
if (w[now] <= n / 2) root = now;
}
inline void dfs(int now, int father) {
siz[now] = 1;
for (int t : dis[now]) {
if (t == father) continue;
dfs(t, now);
siz[now] += siz[t];
}
}

[ARC087D] Squirrel Migration 补题记录的更多相关文章

  1. 【补题记录】ZJU-ICPC Summer Training 2020 部分补题记录

    补题地址:https://zjusummer.contest.codeforces.com/ Contents ZJU-ICPC Summer 2020 Contest 1 by Group A Pr ...

  2. 【JOISC 2020 补题记录】

    目录 Day 1 Building 4 Hamburg Steak Sweeping Day 2 Chameleon's Love Making Friends on Joitter is Fun R ...

  3. 【cf补题记录】Codeforces Round #608 (Div. 2)

    比赛传送门 再次改下写博客的格式,以锻炼自己码字能力 A. Suits 题意:有四种材料,第一套西装需要 \(a\).\(d\) 各一件,卖 \(e\) 块:第二套西装需要 \(b\).\(c\).\ ...

  4. 【cf补题记录】Codeforces Round #607 (Div. 2)

    比赛传送门 这里推荐一位dalao的博客-- https://www.cnblogs.com/KisekiPurin2019/ A:字符串 B:贪心 A // https://codeforces.c ...

  5. Codeforces 1214 F G H 补题记录

    翻开以前打的 #583,水平不够场上只过了五题.最近来补一下题,来记录我sb的调试过程. 估计我这个水平现场也过不了,因为前面的题已经zz调了好久-- F:就是给你环上一些点,两两配对求距离最小值. ...

  6. Yahoo Programming Contest 2019 补题记录(DEF)

    D - Ears 题目链接:D - Ears 大意:你在一个\(0-L\)的数轴上行走,从整数格出发,在整数格结束,可以在整数格转弯.每当你经过坐标为\(i-0.5\)的位置时(\(i\)是整数),在 ...

  7. Codeforces 补题记录

    首先总结一下前段时间遇到过的一些有意思的题. Round #474 (Div. 1 + Div. 2, combined)   Problem G 其实关键就是n这个数在排列中的位置. 这样对于一个排 ...

  8. 【补题记录】NOIp-提高/CSP-S 刷题记录

    Intro 众所周知原题没写过是很吃亏的,突然发现自己许多联赛题未补,故开此坑. 在基本补完前会持续更新,希望在 NOIp2020 前填完. 虽然是"联赛题",但不少题目还是富有思 ...

  9. ZJUT11 多校赛补题记录

    牛客第一场 (通过)Integration (https://ac.nowcoder.com/acm/contest/881/B) (未补)Euclidean Distance (https://ac ...

随机推荐

  1. LevelDB 学习笔记2:合并

    LevelDB 学习笔记2:合并 部分图片来自 RocksDB 文档 Minor Compaction 将内存数据库刷到硬盘的过程称为 minor compaction 产出的 L0 层的 sstab ...

  2. 全栈交叉编译X86完成过程经验分享

    1 CMAKE的交叉编译配置 主要是C和C++编译器的配置和SYSROOT的配置. set (CMAKE_SYSTEM_NAME "Linux") set (CMAKE_SYSTE ...

  3. 有意思的CVE-2022-0337复现

    前言 前两天在刷tw,看到了个比较有意思的一个CVE漏洞,价值奖励是10000美刀,比较好奇的是价值10000美刀的漏洞是什么样子的,漏洞利用就是需要在浏览器中进行用户交互才能触发该漏洞,但由于 Wi ...

  4. vue2响应式原理与vue3响应式原理对比

    VUE2.0 核心 对象:通过Object.defineProtytype()对对象的已有属性值的读取和修改进行劫持 数组:通过重写数组更新数组一系列更新元素的方法来实现元素的修改的劫持 Object ...

  5. 【openstack】cloudkitty组件,入门级安装(快速)

    @ 目录 前言 架构 安装 配置 启动 检索并安装 CloudKitty 的仪表板 前言 什么是CloudKitty? CloudKitty是OpenStack等的评级即服务项目.该项目旨在成为云的退 ...

  6. 墙裂推荐!一款 VM 大规模集群管理工具

    关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ Google 发布了基础设施管理工具 VM Manager,可自动维护大型Compute En ...

  7. Jackson通用工具类

    compile group: 'com.fasterxml.jackson.core', name: 'jackson-core', version: '2.11.1' compile group: ...

  8. Spring Ioc源码分析系列--Ioc容器BeanFactoryPostProcessor后置处理器分析

    Spring Ioc源码分析系列--Ioc容器BeanFactoryPostProcessor后置处理器分析 前言 上一篇文章Spring Ioc源码分析系列--Ioc源码入口分析已经介绍到Ioc容器 ...

  9. 2021夏季学期华清大学EE数算OJ1:算数问题

    第一次写博客,有点紧张... 也许格式也没有特别丑吧 先看原题( 此题做法众多,这里仅仅介绍蒟蒻的一种很复杂的思路(但最后还是喜提0ms的好成绩) 读完这道题,不难发现,此题不过是一个质因数分解+一堆 ...

  10. 详细剖析pyecharts大屏的Page函数配置文件:chart_config.json

    目录 一.问题背景 二.揭开json文件神秘面纱 三.巧用json文件 四.关于Table图表 五.同步讲解视频 5.1 讲解json的视频 5.2 讲解全流程大屏的视频 5.3 讲解全流程大屏的文章 ...